跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李哲宇
Jer-yeu Lee
論文名稱: 石墨烯金屬奈米粒子複合物的合成與應用
Synthesis and applications of metal nanoparticle graphene compostive
指導教授: 劉陵崗
Ling-kang Liu
陳銘洲
Ming-chou Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 98
語文別: 中文
論文頁數: 97
中文關鍵詞: 儲氫金屬奈米粒子石墨烯氫化
外文關鍵詞: graphene, hydrogen storage, hydrogenation, nanoparticle
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們在石墨烯上修飾磺酸根,以增加石墨烯的水溶性。然後在水相中以聯胺作為還原劑、SB12作為分散劑,在石墨烯平面上產生鉑金屬或鈀金屬奈米粒子,以撐開石墨烯的層狀結構。樣品1含Pt 56 wt%,金屬平均粒徑83.2 nm。樣品2含Pt 14 wt%,金屬平均粒徑為27.3 nm。樣品3含Pd 32 wt%,金屬平均粒徑2.4 nm。樣品4含Pd 16 wt%,平均粒徑8.9 nm。
    樣品1~4的儲氫行為中,以樣品3效益最佳。可以在氫氣壓力510 psi的環境下,吸氫達到2.19 wt %。將各樣品當作觸媒應用於催化苯乙烯氫化反應時,樣品1、2效果較市售觸媒Pt/C為佳。樣品3、4亦優於市售Pd/C。
    利用離子液體[HOCH2CH2NH3][HCO2]同時作為溶劑、還原劑及分散劑,微波加熱下可還原鉑金屬源,在石墨烯或氧化石墨共存時形成鉑奈米粒子。其中樣品5(石墨烯基板,含Pt 62 wt %,金屬平均粒徑5.0 nm)、樣品7(氧化石墨基板,含Pt 40 wt%,金屬平均粒徑18.8 nm)、樣品8(氧化石墨基板,含Pt 1 wt%,金屬平均粒徑4.7 nm)所得之鉑金屬奈米粒子為非常特殊的方形。樣品6(石墨烯基板,含Pt 13 wt%,金屬平均粒徑14.6 nm)所得之鉑金屬奈米粒子呈現削角之立方形狀。推測反應環境中,還原劑與金屬源比例懸殊,金屬源還原速度太快,金屬堆疊成長失去方向性而無法形成簡單方形奈米粒子。樣品8的鉑量也很小,但在氧化石墨上豐富的含氧官能基,容易吸引金屬離子,在含氧官能基附近優先形成晶種,調節了晶體的成長,因此樣品8仍然可以形成方形之奈米粒子。
    樣品5、6當作觸媒應用於催化苯乙烯氫化反應時,效果亦皆較市售觸媒Pt/C為佳。


    To increase the solubility of graphene in water, we modified the graphene skeleton with sulfonyl groups. With hydrazine as the reducing agent, SB12 as the surfactant in the aqueous phase, platinum and palladium nanoparticles were produced on the graphene plane skeletons, separating the graphene layers. Sample 1 has 56 wt% Pt, with average of metal particle size of 83.2 nm; sample 2 has 14 wt% Pt, with particle size of 27.3 nm; sample 3 has 32 wt% Pd, with particle size of 2.4 nm, and sample 4 has 16 wt% Pd, with particle size of 8.9 nm.
    Towards hydrogen storage applications, sample 3 performs the best. Under 510 psi hydrogen pressure, the hydrogen uptake reaches 2.19 wt%. The samples 1~4, when used in catalytic hydrogenation of styrene, all gave better than results commercial catalysts. For samples 1、2, they are better than the commercial Pt / C; and for samples 3、4, they are better than the commercial Pd / C.
    Ionic liquid [HOCH2CH2NH3][HCO2] was used as a solvent, as a reducing agent, and also as a surfactant, converting Pt metal source to Pt nanoparticles under microwave heating conduction. Following are the characteristics of Pt nanoparticles formed on the plane of graphite oxide and graphene. Sample 5 is on the graphene substrate, with Pt 62 wt%, and the average metal particle size of 5.0 nm, sample 7 on the graphite oxide substrate, with Pt 40 wt%, and the average metal particle size of 18.8 nm, and sample 8 on the graphite oxide substrate, containing Pt 1 wt%, and the average metal particle size of 4.7 nm. Samples 5, 7~8 were seen to have a very special cubic shape. Pt nanoparticles in sample 6 on the graphene substrate, with Pt 13 wt%, and the average metal particle size of 14.6 nm were in multiply truncated cubic shape. The rationale is that the ratio between the concentration of reducing agent and that of metal source is too large under the reaction condition, and the formation and the stacking of metal become too fast to grow to crystals properly in a cubic shape. Sample 8 still formed a cubic shaped nanoparticles, presumably that graphite oxide is rich with the oxygen functionalities which regulate the seeding and growth of the Pt nanoparticles in proximity.
    Sample 5 and 6 were used in the catalytic hydrogenation of styrene. Better results were obtained for 5 and 6 when compared with that of commercial Pt / C.

    摘要 ……………………………………………………………… i Abstract ……………………………………………………………… ii 誌謝 ……………………………………………………………… iv 目錄 ……………………………………………………………… vi 圖目錄 ……………………………………………………………… viii 表目錄 ……………………………………………………………… x 一、 緒論………………………………………………………… 1 1-1 前言………………………………………………………… 1 1-2 儲氫材料…………………………………………………… 2 1-3 石墨烯的介紹……………………………………………… 4 1-4 石墨烯的製備……………………………………………… 7 1-5 離子液體簡介……………………………………………… 17 1-6 離子液體的應用…………………………………………… 24 1-7 研究動機與目的…………………………………………… 28 二、 石墨烯的製備……………………………………………… 29 2-1 石墨烯的製備與鑑定……………………………………… 29 2-2 反應機制…………………………………………………… 33 三、 水相聯胺還原法…………………………………………… 38 3-1 石墨烯鉑奈米粒子複合物的製備………………………… 38 3-2 石墨烯鈀奈米粒子複合物的製備………………………… 42 四、 離子液體微波法…………………………………………… 45 4-1 離子液體的性質…………………………………………… 45 4-2 石墨烯鉑金屬奈米粒子複合物的製備與鑑定…………… 48 4-3 氧化石墨鉑金屬奈米粒子複合物的製備與鑑定………… 52 五、 石墨烯金屬複合物的應用………………………………… 54 5-1 石墨烯金屬奈米粒子複合物與氫氣作用………………… 54 5-2 石墨烯金屬奈米粒子複合物的儲氫實驗………………… 56 5-3 石墨烯金屬奈米粒子複合物觸媒氫化反應……………… 59 六、 結論與展望………………………………………………… 61 6-1 結論………………………………………………………… 61 6-2 展望………………………………………………………… 62 七、 實驗流程…………………………………………………… 63 7-1 藥品與儀器………………………………………………… 63 7-2 實驗流程…………………………………………………… 68 八、 參考文獻…………………………………………………… 75 九、 附錄………………………………………………………… 80

    1. 陳斌豪; 谷傑人. 工業材料 2008, 262, 197.
    2. Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Science 2009, 324, 74.
    3. Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.
    4. Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245.
    5. Orimo, S.-i.; Nakamori, Y.; Eliseo, J. R.; Zttel, A.; Jensen, C. M. Chem. Rev. 2007, 107, 4111.
    6. Navarro, R. M.; Pea, M. A.; Fierro, J. L. G. Chem. Rev. 2007, 107, 3952.
    7. Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.
    8. 谷傑人. 工業材料 2009, 265, 101.
    9. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477.
    10. Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
    11. Wang, Z.; Chen, G.; Ding, K. Chem. Rev. 2009, 109, 322.
    12. Murray, L. J.; Dincă, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
    13. Han, S. S.; Mendoza-Cortés, J. L.; Goddard III, W. A. Chem. Soc. Rev. 2009, 38, 1460.
    14. Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 14176.
    15. Gordon, P. A.; Saeger, R. B. Ind. Eng. Chem. Res. 1999, 38, 4647.
    16. Yao, X.; Wu, C.; Du, A.; Lu, G. Q.; Cheng, H.; Smith, S. C.; Zou, J.; He, Y. J. Phys. Chem. B 2006, 110, 11697.
    17. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
    18. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
    19. Balandin, A. A. Nano Lett. 2008, 8, 902.
    20. Bolotin, K. I. Solid State Commun. 2008, 146, 351.
    21. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.
    22. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, M. J.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Nature 2009, 457, 706.
    23. Brumfiel, G. Nature 2009, 458, 390.
    24. Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. J. Phys. Chem. C 2008, 112, 15704.
    25. Dimitrakakis, G. K.; Tylianakis, E.; Froudakis, G. E. Nano Lett. 2008, 8, 3166.
    26. Park, S.; Ruoff, R. S. Nature Nanotechnology 2009, 4, 217.
    27. Brodie, B. C. Ann. Chim. Phys. 1860, 59, 466.
    28. Schafhaeutl, C. Phil. Mag. 1840, 16, 570.
    29. Staudenmaier, L. Ber. Deut. Chem. Ges. 1898, 31, 1481.
    30. Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
    31. McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud''homme, R. K.; Aksay, I. A. Chem. Mater. 2007, 19, 4396.
    32. Xu, Y.; Bai, H.; Lu, G.; Chun Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130, 5856.
    33. He, H.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287 53.
    34. Schniepp, H. C.; Li, J.-L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud''homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535.
    35. Ozawa, M.; Osawa, E. Carbon 1999, 37, 706.
    36. Si, Y.; Samulski, E. T. Nano Lett. 2008, 8, 1679.
    37. Eizenberg, M.; Blakely J. M. Surf. Sci. 1970, 82, 228.
    38. Vaari, J.; Lahtinen, J.; Hautojärvi, P. Catal. Lett. 1997, 44, 43.
    39. Ueta, H.; Saida, M.; Nakai, C.; Yamada, Y.; Sasaki, M.; Yamamoto, S. Surf. Sci. 2004, 560, 183.
    40. Starr, D. E.; Pazhetnov, E. M.; Stadnichenko, A. I.; Boronin, A. I.; Shaikhutdinov, S. K. Surf. Sci. 2006, 600, 2688.
    41. Gall'', N. R.; Rut''kov, E. V.; Tontegode, A. Y. Phys. Solid State 2004, 46, 371.
    42. Coraux, J.; Ndiaye, A. T.; Busse, C.; Michely, T. Structural Nano Lett. 2008, 8, 565.
    43. de Parga, A. L. V.; Calleja, F.; Borca, B.; Passeggi, J. M. C. G.; Hinarejos, J. J. Phys. Rev. Lett. 2008, 100, 056807.
    44. Marchini, S.; Gunther, S.; Wintterlin, J. Phys. Rev. B Condens. Matter 2007, 76, 075429.
    45. Sutter, P. W.; Flege, J.-I.; Sutter, E. A. Nature Mater. 2008, 7, 406.
    46. Kuznetsov, V. L.; Chuvilin, A. L.; Butenko, Y. V.; Mal''kov, I. Y.; Titov, V. M. Chem. Phys. Lett. 1994 222, 343.
    47. Andersson, O. E.; Prasad, B. L. V.; Sato, H.; Enoki, T.; Hishiyama, Y.; Kaburagi, Y.; Yoshikawa, M.; Bandow, S. Phys. Rev. B 1998, 58, 16387.
    48. Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. Adv. Funct. Mater. 2008, 18, 1518.
    49. Wasserscheid, P.; Welton, T., Ionic Liquids in Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA,: 2007.
    50. Kosynkin1, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.
    51. Seddon, K. R. J. Chem. Tech. Biotechnol. 1997, 68, 351.
    52. Pernak, J.; Czepukowicz, A.; Pozniak, R. Ind. Eng. Chem. Res. 2001, 40, 2379.
    53. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc. Dalton Trans. 1999, 13, 2133.
    54. Gordon, C. M.; Holbrey, J. D.; Kennedy, A. R.; Seddon, K. R. J. Mater. Chem. 1998, 8, 2627.
    55. Migowski, P.; Dupont, J. Chem.-Eur. J. 2007, 13, 32.
    56. Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000, 1249.
    57. Brennecke, J. F.; Anderson, J. L.; Dixon, J. K. Acc. Chem. Res. 2007, 40, 1208.
    58. Hiroyuki, O. Bull. Chem. Soc. Jpn. 2006, 79, 1665.
    59. Carmichael, A. J.; Earle, M. J.; Holbrey, J. D.; Mccormac, P. B.; Seddon, K. R. Org. Lett. 1999, 1, 997.
    60. Hagiwara, H.; Shimizu, Y.; Hoshi, T.; Suzuki, T.; Ando, M.; Ohkubo, K.; Yokoyama, C. Tetrahedron Lett. 2001, 42, 4349.
    61. Cassol, C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J. J. Am. Chem. Soc. 2005, 127, 3298.
    62. Dyson, P. J.; Ellis, D. J.; Parke, D. G.; Welton, T. Chem. Commun. 1999, 25.
    63. Handy, S. T.; Zhang, X. Org. Lett. 2001, 3, 233.
    64. Chiappe, C.; Imprato, G.; Napolitano, E.; Pieraccini, D. Green Chem. 2004, 6, 33.
    65. Vitz, J.; Mac, D. H.; Legoupy, S. Green Chem. 2007, 9, 431.
    66. Pan, X.; She, X.; Li, Y.; Zhang, J.; Wang, W.; Miao, Q. J. J. Org. Chem. 2005, 70, 3285.
    67. Han, B.; Zhang, Z.; Xie, Y.; Li, W.; Hu, S.; Song, J.; Jiang, T. Angew. Chem. Int. Ed. 2008, 47, 1127.
    68. Yabu, H.; Tajima, A.; Higuchi, T.; Shimomura, M. Chem. Commun. 2008, 4588.
    69. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772.
    70. Tempel, D. J.; Henderson, P. B.; Brzozowski, J. R.; Pearlsrein, R. M.; Garg, D. USA, 20060060818, 2006.
    71. Stracke, M. P.; Ebeling, G.; Cataluna, R.; Dupont, J. J. Energy Fuels 2007, 21, 1695.
    72. Brennecke, J. F.; Maginn, E. J. US Patent 6,579,343, 2003.
    73. Blanchard, L. A.; Brennecke, J. F. Ind. Eng. Chem. Res. 2001, 40, 2550.
    74. Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399, 28.
    75. Jaeger, D. J.; Tucker, C. E. Tetrahedron Lett. 1989, 30, 1785.
    76. Huchette, D.; Thery, B.; Petit, F. J. Mol. Catal. 1979, 4, 433.
    77. Wasserscheid, P.; Bosmann, A.; Bolm, C. Chem. Commun. 2002, 200.
    78. Ishida, Y.; H.;, M.; Saigo, K. Chem. Commun. 2002, 2240.
    79. Kamimura, A.; Yamamoto, S. Org. Lett. 2007, 9, 2533.
    80. Noto, R.; Anna, F. D.; Marullo, S. J. Org. Chem. 2008, 73, 6224.
    81. Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. J. Org. Chem. 1986, 51, 480.
    82. Motirale, B. G.; Yadav, G. D. Ind. Eng. Chem. Res. 2008, 47, 9081.
    83. Wang, M. L.; Huang, T. H. Chem. Eng.Comm. 2007, 194, 618.
    84. Dupont, J.; Prechtl, M. H.; Scariot, M.; Scholten, J. D.; Machado, G.; Teixeira, S. R. Inorg. Chem. 2008, 47, 6427.
    85. Yu, S.; Yan, F.; Zhang, X.; You, J.; Wu, P.; Lu, J.; Xu, Q.; Xia, X.; Ma, G. Macromolecules 2008, 41, 3389.
    86. MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature 1999, 402, 792.
    87. Doyle, M.; Choi, S. K.; Proulx, G. J. Electrochem. Soc. 2000, 147, 34.
    88. Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; Yanagida, S. Chem. Commun. 2002, 374.
    89. Xie, Y.; Zhang, Z.; Hu, S.; Song, J.; Li, W.; Han, B. Green Chem. 2008, 10, 278.
    90. Mu, X. D.; Meng, J. Q.; Li, Z. C.; Kou, Y. J. Am. Chem. Soc. 2005, 127, 9694.
    91. Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han, B.; Wu, T.; Ding, K. Angew. Chem. Int. Ed. 2007, 46, 7255.
    92. Yang, X.; Fei, Z.; Zhao, D.; Ang, W. H.; Li, Y.; Dyson, P. J. J. Inorg. Chem. 2008, 47, 3292.
    93. Gao, X.; Jang, J. K.; Nagase, S. J. Phys. Chem. C 2010, 114, 832.
    94. Wade, L. G., Organic Chemistry. Prentuce-Hall, Inc.: 1999; p 879-882.
    95. McCreery, R. L. Chem. Rev. 2008, 108, 2646.
    96. Anariba, F.; DuVall, S. H.; McCreery, R. L. Anal. Chem. 2003, 75, 3837.
    97. Pinson, J.; Podvorica, F. Chem. Soc. Rev. 2005, 34, 429.
    98. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Carbon 2007, 45, 1558.
    99. Si, Y.; Samulski, E. T. Chem. Mater. 2008, 20, 6792.
    100. Bicak, N. J. Mol. Liq. 2005, 116, 15.
    101. Richter, K.; Bäcker, T.; Mudring, A.-V. Chem. Commum. 2009, 301.
    102. Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Grácio, J. Chem. Mater. 2009, 21, 4796.
    103. Wang, L.; Lee, K.; Sun, Y.-Y.; Lucking, M.; Chen, Z.; Zhao, J. J.; Zhang, S. B. ACS Nano 2009, 3, 2995.

    QR CODE
    :::