| 研究生: |
王宣文 Hsuan-Wen Wang |
|---|---|
| 論文名稱: |
以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響 Research of High Efficiency Silicon Heterojunction Solar Cell Fabricated by Sputtering:Impact of Silicon Thin Film Properties on Device Performance |
| 指導教授: |
李正中
Cheng-Chung Lee 陳昇暉 Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 異質接面太陽能電池 、矽薄膜 、磁控濺鍍 |
| 外文關鍵詞: | heterojuction solar cell, silicon thin film, magnetron sputtering |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
濺鍍為一種廣泛應用於薄膜成長,且具有許多優點的技術。然而對於矽薄膜的成長而言,濺鍍製程中的離子轟擊效應會使薄膜產生微孔洞,造成電性上的缺陷。因此濺鍍所製作的薄膜易形成矽氫多鍵結構與不易摻雜的特性。所以使用濺鍍法製作太陽能電池的難度較高,未能普及。
本研究使用磁控濺鍍來成長含氫矽薄膜並應用此方法製作矽異質接面太陽能電池。研究發現對基板施加正偏壓下,可有效使矽氫多鍵轉變為矽氫單鍵之穩定型態,且可藉由調變濺鍍功率與氣壓等參數來提升薄膜的摻雜效率。此外再以提升摻雜的P型矽薄膜成長於N型矽晶片表面來製作異質接面太陽能電池。於選擇適當的薄膜製程條件下,可在平面型(未表面粗糙化)的矽晶片獲得10%轉換效率之異質接面太陽能電池。
Sputtering is a popular technique with many advantages for thin film deposition. However, as for the preparation of hydrogenated silicon thin film, ion bombardment accompanies during sputtering may generate microstructures (voids, columnar structures) within the film, which leads to unfavorable silicon dihydride bodings and electrical defects. Therefore, hydrogenated silicon films fabricated by sputtering are hard to be doped. Those inferior properties made sputtering become non-popular in the fabrication of silicon thin film cells.
In this research, we improved the qualities of hydrogenated silicon thin films and investigated electrical and optical properties with respect to deposition parameters. Our results indicated that applying positive bias voltage on the substrate provokes silicon monohydride formation, which is a rather stable bonding configuration as compared to silicon dihydride. Besides, the difficulties of doping can be reduced by refining fabrication parameters such as sputtering power and gas pressure. Futhermore, amorphous P-type / crystalline N-type silicon heterojunction solar cell using non-texture wafer surface has also been demonstrated. Proto-type solar cells with 1cm × 1cm area and 10% conversion efficiency were realized by choosing the appropriate sputtering parameters.
[1.1] Photon International, http:/www.photon-magazine.com/
[1.2] W. Schockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys. 32 (1961) 510-519.
[2.1] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Mat. Res. Bull. 3 (1967) 37-46.
[2.2] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon”, J. Electrochem. Soc. 116 (1969) 77-81.
[2.3] W. E. Spear and P. G. LeComber,”Investigation of the localized state distribution in amorphous Si films”, J. Non-Cryst. Solids 8-10 (1972) 727-738.
[2.4] W. E. Spear and P. G. LeComber,”Subsitutional doping of amorphous silicon”, Solid State Commun. 17 (1975) 1193-1196.
[2.5] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell”, Appl. Phys. Lett. 28 (1976) 671-673.
[2.6] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett. 31 (1977) 292-294.
[2.7] J. C. Knight and R. A. Lujan, “Microstructure of plasma-deposited a-Si:H films”, Appl. Phys. Lett. 35 (1979) 244-246.
[2.8] J. C. Knight, “Characterization of plasma-deposited amorphous Si:H thin films”, Jpn. J. Appl. Phys. 18 Supplement 18-1 (1979) 101-108.
[2.9] J.A. Reimer, R. W. Vaughan and J. C. Knight, “Proton magnetic resonance spectra of plasma-deposited amorphous Si:H films”, Phys. Rev. Lett. 44 (1980) 193-196.
[2.10] J. I. Pankove and J. E. Berkeyheise “Light-induced radiative recombination centers in hydrogenated amorphous silicon”, Appl. Phys. Lett. 37 (1980) 705-707.
[2.11] M. Stutzmann, W. B. Jackson and C. C. Tsai “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Phys. Rev. B 32 (1985) 23-47.
[2.12] D. E. Carlson, “Hydrogenated microvoids and light-induced degradation of amorphous silicon solar cell”, Appl. Phys. A. 41 (1986) 305-309.
[2.13] S. Nakano, H. Tarui, H. Haku, T. Takahama, T. Matsuyama, M. Isomura, M. Nishikunu, N. Nakamura, S. Tsuda, M. Ohnishi and Y. Kuwano “Material investigations for high-efficiency and high-reliability a-Si solar cells”, Proceedings of the 19th IEEE photovoltaic specialist conference, (IEEE, New York, 1987), p.678.
[2.14] E. Bhattacharya and A. H. Mahan, “Microstructure and the light-induced metastability in hydrogenated amorphous silicon”, Appl. Phys. Lett. 52 (1988) 1587-1589.
[2.15] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, and electrical properties of amorphous silicon films”, Phys. Rev. B. 1 (1970) 2632-2641.
[2.16] G. A. N. Connell and J. R. Pawlik, “Use of hydrogen in structural and electronic studies of gap states in amorphous germanium”, Phys. Rev. B. 13 (1976) 787-804.
[2.17] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium”, Phys. Rev. B. 14 (1970) 658-668.
[2.18] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Phil. Mag. 33 (1976) 935-949.
[2.19] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Solid State Commun. 20 (1976) 969-972.
[2.20] T. D. Moustakas, D. A. Anderson and W. Pual, “Preparation of highly photoconductive amorphous silicon by rf sputtering”, Solid State Comm. 23 (1977) 155-158.
[2.21] T. Tiedje, T. D. Moustakas and J. M. Cebulka, “Effect of hydrogen on the density of gap states in reactively sputtered amorphous silicon”, Phys. Rev B. 23 (1981) 5634-5637.
[2.22] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated by reactive sputtering”, Appl. Phys. Lett. 40 (1982) 515-517.
[2.23] M. H. Brodsky, M. Cardona and J. J. Cuomo “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B. 16 (1977) 3556-3571.
[2.24] E. C. Freeman and W. Paul, “Infrared vibrational spectra of rf-sputtered hydrogenated amorphous silicon”, Phys. Rev. B. 18 (1978) 4288-4300.
[2.25] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, J. Electro. Mat. 8 (1979) 391-435.
[2.26] T. D. Moustakas, “Studies of thin-film growth of sputtered hydrogenated amorphous silicon”, Sol. Eng. Mat. 8 (1982) 187-204.
[2.27] M. Pinarbasi, J. R. Abelson and M. J. Kushner, “Reduced Staebler-Wronski effect in reactively sputtered hydrogenated amorphous silicon thin films”, Appl. Phys. Lett. 56 (1990) 1685-1687.
[2.28] T. D. Moustakas and H. P. Maruska, “Method for sputtering a pin microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets” United States Patent, No.4508609 (1985)
[2.29] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering” Physica B. 308-310 (2001) 257-260.
[2.30] M. M. de Lima Jr., F. L. Freire Jr., and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering” Brazilian J. of Phys. 32 (2002) 379-382.
[3.1] 莊達人,《VLSI製造技術》,高立圖書有限公司 (2005)
[3.2] K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology: Principles, Technology, and Applications, (Noyes publications, Park Ridge, 1992).
[3.3] 田民波,《薄膜技術與薄膜材料》,五南圖書出版股份有限公司 (2007)
[3.4] W. R. Grove, “On the electro-chemical polarity of gases”, Philosophical Transactions of the Royal Society 142, (1852) 87-101.
[3.5] J. K. Robertson and C. W. Clapp, “Removal of metallic deposits by high-frequency currents”, Nature 132 (1933) 479-480.
[3.6] J. I. Lodge and R. W. Stewart, “Studies in high frequency discharges”, Can. J. Res. 26A (1948) 205-221.
[3.7] G. S. Anderson, W. N. Mayer and G. K. Wehner, “Sputtering of dielectrics by high-frequency fields”, J. Appl. Phys. 33 (1962) 2991-2992.
[3.8] P. D. Davidse and L. I. Maissel, “Dielectric thin films through sputtering”, J. Appl. Phys. 37 (1966) 574-579.
[3.9] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[3.10] B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th edition, (Pearson Education Taiwan Ltd, 2010).
[3.11] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, (Prentice-Hall publications, 2001).
[3.12] M. Sze, Physics of Semiconductor Devices, 2nd edition, (Wiley, 1983)
[3.13] 陳柏丞,《非(微)晶矽薄膜太陽能電池之能隙結構研究》,中央大學碩士論文 (2011)
[3.14] R. C. Chittick, J. H Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon”, J. Electrochem Soc. 116 (1969) 77-81.
[3.15] N. F. Mott and F. A. Davis, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Phil. Mag. 22 (1970) 903-922.
[3.16] R. A. Street, “Doping and the fermi energy in amorphous silicon”, Phys. Rev. Lett. 49 (1982) 1187-1190.
[3.17] M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogenated amorphous silicon and germanium”,Phys. Rev. B. 35 (1987) 5666-5701.
[3.18] R. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, (Kluwer Academic Publishers, 1998).
[4.1] Brain C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, (CRC press, 1996).
[4.2] HORIBA傅立葉轉換紅外線光譜儀(FTIR)使用手冊
[4.3] G. Lucovsky and W. B. Pollard, The Physics of Hydrogenated Amorphous Silicon, Part II, Topics in Applied Physics, (Springer, 1984).
[4.4] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev. B. 45 (1992) 13367-13377.
[4.5] Y. Hishikawa, N. Nakamura, and S. Tsuda, “Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Jpn. J. Appl. Phys. 30 (1991) 1008-1014.
[4.6] J. Tauc, Amorphous and liquid Semiconductors, (Plenum Press, 1974).
[4.7] 張庭維,《以定光電流量測之吸收係數分析矽薄膜缺陷密度之研究》,國立中央大學碩士論文 (2010)
[4.8] J. Poortmans and V. Arhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, (John Wiley & Sons, 2006).
[4.9] J. Bailat, PH. D. Thesis, University of Neuchâtel, (2004).
[4.10]林麗娟,《X光繞射原理及其應用》,工業材料,第86期 (1997)
[5.1] 周凌毅,《反應式濺鍍過渡態矽薄膜之研究》,中央大學碩士論文 (2009)
[5.2] K. K. Gleason, M. A. Petrich and J. A. Reimer, “Hydrogen microstructure in amorphous hydrogenated silicon”, Phys. Rev. B. 36 (1987) 3259-3267.
[5.3] M. M. de Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, J. Non-Cryst. Solids 299-302 (2002) 605-609.
[5.4] W. Beyer, H. Wagner, and H. Mell, “Effect of boron-doping on the hydrogen evolution from a-Si:H films”, Solid. State Commun. 39 (1981) 375-379.
[5.5] R. A. Street, Hydrogenated amorphous silicon, (Cambridge University Press, 1991).
[5.6] N. Wysch, F. Finger, T. J. McMahon and M. Vanecek, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H”, J. Non-Cryst. Solids 137&138 (1991) 347-350.
[5.7] G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks, “Optical characterization of amorphous silicon hydride films”, Sol. Cells 2 (1980) 277-243.
[5.8] I. Wagner, H. Stasiewski, B. Abeles, and W. A. Lanford, “Surface states in P- and B-doped amorphous hydrogenated silicon”, Phys. Rev. B 28 (1983) 7080-7086.
[5.9] J. Ristein and G. Weiser, “Influence of doping on the optical properties and on the covalent bonds in plasma deposited amorpohus silicon”, Sol. Energy Mater. 12 (1985) 221-232.
[5.10] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Phys. Rev. B. 34 (1986) 7031-7044.
[5.11] C. C. Tsai, “Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition”, Phys. Rev. B 19 (1979) 2041-2055.
[5.12] 鄧旭軒,《以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究》,中央大學碩士論文 (2008)
[6.1] M. Iwamoto, K. Minami, T. Yamaoki, “Photovoltaic device” United States Patent, No.5066340 (1991)
[6.2] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, “Development of new a-Si/c-Si Heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Jpn. J. of Appl. Phys. 31 (1992) 3518-3522.
[6.3] A. Ogane, Y. Tsunomura, D. Fujishima, A. Yano, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, H. Inoue and Eiji Maruyama, “Recent progress of HIT solar cells heading for the higher conversion efficiencies” 21th International Photovoltaic Science and Engineering Conference, Fukuoka, 2011
[6.4] B. Jagannathan, W. A. Anderson and J. Coleman, “Amorphous silicon/p-type crystalline silicon heterojunction solar cells”, Sol. Eng. Mat. and Sol. Cells 46 (1997) 289-310.
[6.5] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar cell efficieincy tables (version 39)”, Prog. Photovolt: Res. Appl. 20 (2012) 12-20.
[6.6] E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces”, Phys. Rev. Lett. 57 (1986) 249-252.
[6.7] 楊明輝,《透明導電膜》,藝軒圖書出版社,(2008)
[7.1] D. Pysch, A. Mette and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells”, Sol. Eng. Mat. and Sol. Cells 91 (2007) 1698-1706.
[7.2] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[7.3] M. Iwamoto, K. Minami, T. Yamaoki, “Photovoltaic device” United States Patent, No.5066340 (1991)
[7.4] D. H. Zhang, B. Chen and D. Haneman, “Metal contacts on amorphous hydrogenated silicon: effects of annealing”, Thin Solid Films. 208 (1992) 87-90.
[7.5] J. W. Jeon, S. Y. Lee, J. O. Song and T. Y. Seong, “Low-resistance Cr/Al ohmic contacts to N-polar n-type GaN for high-performance vertical light-emitting diodes”, Curr. Appl. Phys. 12 (2012) 225-227.
[7.6] Q. Zhang, P. Vichchulada, S. B. Shivareddy and M. D. Lay, “Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing”, J. Mat. Sci. 47 (2012) 3233-3240.