| 研究生: |
林辰峯 Chen-Feng Lin |
|---|---|
| 論文名稱: |
以水熱法/含浸法合成之V2O5/MCM-41觸媒轉化氣流中戴奧辛、NO及汞之研究 Conversion of Dioxin, NO and Mercury from Gas Streams via V2O5/MCM-41 Catalysts Prepared with Hydrothermal Method / Incipient Wetness Technique |
| 指導教授: | 張木彬 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 戴奧辛 、選擇性觸媒還原法 、NOx 、多重污染物控制 |
| 外文關鍵詞: | multipollutant |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
選擇性觸媒還原法是利用NH3為還原劑,將NOx還原為N2以及H2O,目前觸媒技術也應用在戴奧辛之去除與汞的氧化。本研究以MCM-41作為觸媒載體,利用不同合成方法製備觸媒轉化戴奧辛、NO以及汞,藉由MCM-41之高比表面積及高分散性以提升觸媒對污染物之轉化催化效率,達多重污染物控制之目標。
研究結果指出在NO去除方面,空間流速、氧含量及觸媒之活性相配比皆會影響NO去除效率,以含浸法合成之5 wt%V2O5/MCM-41 (5VMIWT)觸媒於400oC對NO去除效率達70.7%。副產物測量顯示,操作溫度由250oC上升至400oC時,開始有N2O之生成;當空間流速從10000 hr-1增加至20000 hr-1時,N2O生成量由37.6 ppm下降至34.9 ppm,並進一步發現N2O生成可能由NH3氧化生成。而觸媒之V2O5含量越高也會增加N2O之生成趨勢。以MCM-41為載體之觸媒其N2O之生成潛勢與先前研究相比有減少之趨勢 (Kim et al., 2010)。在元素汞氧化測試方面,以水熱法合成之5 wt%V2O5/MCM-41 (5VMHM)及含浸法合成之5 wt%V2O5/MCM-41 (5VMIWT)觸媒於150oC對元素汞皆有良好之氧化效率,分別達73.9%及87.8%。
在戴奧辛去除方面分成實驗室及實廠進行探討,實驗室系統於300oC下對戴奧辛之去除效率測試結果顯示由含浸法合成之5 wt%V2O5/MCM-41 (5VMIWT)觸媒其去除效率高於水熱法合成之5 wt%V2O5/MCM-41 (5VMHM)分別為66.9%及40.1%;實廠戴奧辛去除測試方面,5 wt%V2O5/MCM-41 (5VMHM)於150oC達92.7%,5 wt%V2O5/MCM-41 (5VMIWT) 於300oC達96.5%。實驗室與實廠之戴奧辛去除測試其趨勢相同,以水熱法合成之5 wt%V2O5/MCM-41 (5VMHM)觸媒對戴奧辛去除以吸附為主,而以含浸法合成之5 wt%V2O5/MCM-41 (5VMIWT)觸媒則以破壞為主。
本研究指出在轉化氣流中NO、戴奧辛及汞方面皆以含浸法合成之V2O5/MCM-41觸媒較水熱法合成之V2O5/MCM-41觸媒之效果為佳。
Selective catalytic reduction (SCR) with NH3 is regarded as one of the most effective technologies for the abatement of NOx on-board. SCR was mainly applied to remove NOx as initially developed and now it has been used to reduce dioxin emissions and oxidize elemental mercury as well. Presently, using catalysis to abate multipollutants has become one of the mainstream technologies. This study is divided into three parts, including NO conversion, mercury oxidation and dioxin removal. The study investigates the effectiveness of the SCR catalysts (V2O5/MCM-41) prepared with two synthesis methods (incipient wetness technique and hydrothermal method) for converting those three pollutants. The NO conversions achieved with 5wt%V2O5/MCM-41 (5VMIWT) is 70.7% at 400oC. The results indicate that N2O formation is reduced as MCM-41 is applied as the carrier, while the efficiencies of PCDD/Fs removal and elemental mercury oxidation in field tests are relatively high.
The best PCDD/F removal efficiencies in field tests achieved with 5wt%V2O5/MCM-41 (5VMHM) is 92.7% at 150oC, and 5wt%V2O5/MCM-41 (5VMIWT) is 96.5% at 300oC. The trends of field and pilot-scale tests are consistent. Removal of dioxins with the catalyst prepared by incipient wetness technique is predominantly based on destruction, while the catalyst prepared by hydrothermal method is predominantly via adsorption.
The results indicate that the catalysts prepared by incipient wetness technique is more effective than that of hydrothermal method for conversion of dioxin, NO and mercury from gas streams.
Altwicker E and Millgan M S, “Formation of dioxins: competing rates between chemical similar precursors and de novo reaction”, Chemosphere, Vol.27, pp.301-307(1993).
Babushok V I and Tsang W, “Gas-phase mechanism for dioxin formation”, Chemosphere, Vol.51, pp1023-1029(2003).
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H and Sheppard E W, “A new family of mesoporous molecular sieves prepared with liquid crystal templates”, American Chemical Society, Vol.114, pp.10834-10843(1992).
Beeckman J W and Hegedus L L, “Design of monolith catalysts for power NOx emission control”, Industrial & Engineering Chemistry Research, Vol.30, pp.969-978(1991).
Beer J M and Martin G B, “Application of advanced technology for NO control: alternate fuels and fluidized bed coal combustion,” AIChE Symposium Series, Vol.74(175), pp.93-114(1978).
Belmabkhout Y, Serna-Guerrero R and Sayari A, “Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: Pure CO2 adsorption”, Chemical Engineering Science, Vol.64, pp.3721-3728(2009).
Bhattacharyya S, Lelong G and Saboungi M-L, “Recent progress in the synthesis and selected applications of MCM-41: a short review”, Experimental Nanoscience, Vol.1, pp.375-395(2006).
Bonte J L, Fritsky K J, Plinke M A and Wilken M, “Catalytic destruction of PCDD/F in a fabric filter: Experience at a municipal waste incinerator in Belgium”, Waste Management, Vol.22, pp.421-426(2002).
Bosch H and Janssen F, “De-NOx catalyst review”, Catalyst Today, Vol.2, pp.369-532(1988).
Boyano A, Lombardo N, G´alvez M E, L´azaro M J and Moliner R, “Vanadium-loaded carbon-based monoliths for the on-board NO reduction: Experimental study of operating conditions”, Chemical Engineering Journal, Vol.144, pp.343-351(2008).
Bramer E A and M Valk, “Nitrous oxide and nitric oxide emissions by fluidized bed combustion”, Proceedings of International Conference on Fluidized Bed Combustion 11th, pp.701-707(1991).
Cao Y, Gao Z, Zhu J, Wang Q, Huang Y, Chiu C, Parker B, Chu P and Pan W P, “Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal”, Environmental science & technology, Vol.42, pp.256-261(2007).
Chang S H, Yeh J W, Chein H M, Hsu L Y, Chi K H and Chang M B, “PCDD/F adsorption and destruction in the flue gas streams of MWI and MSP via Cu and Fe catalysts supported on carbon”, Environmental Science and Technology, Vol.42, pp.572-5733(2008).
Chen C Y, Li H X and Davis M E, “Studies on mesoporous materials: I. Synthesis and characterization of MCM-41”, Microporous Materials, Vol.2, pp. 17-26(1993).
Chen C Y, Burkett S L, Li H X and Davis M E, “Studies on mesoporous materials II. Synthesis mechanism of MCM-41”, Microporous Materials, Vol.2, pp. 27-34(1993).
Chen L, Li J, Ge M and Zhu R, “Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia”, Catalysis Today, Vol.356, pp.77-83(2010).
Everaert K and Baeyens J, “Correlation of PCDD/F emissions with operating parameters of municipal solid waste incinerators”, Journal of Air & Waste Management Association, Vol.51, pp.718-224(2001).
Fenimore C P and J Moore, “Quenched carbon monoxide in fuel-lean flame gas”, Combustion and Flame, Vol.22, pp.343-351(1974).
Froese K L and Hutzinger O, ”Polychlorinated benzene, phenol, dibenzo-P-dioxin, and dibenzofuran in heterogeneous combustion reaction of acetylene”, Environmental Science and Technology, Vol.30, pp.998-1008(1996).
Furusawa T, Honda T, Takano J and Kunii D, “Abatement of nitric oxide emission in fluidized bed combustion of coal”, Chemical Engineering of Japan 11(3), pp.377-383(1978).
Goel S, Zhang B and Sarofim A F, “NO and N2O formation during char combustion: Is it HCN or surface attached nitrogen?”, Combustion and Flame 104, pp.213-217(1996).
Gonzalez F, Pesquera C, Perdigon A and Blanco C, “Synthesis, characterization and catalytic performance of Al-MCM-41 mesoporous materials”, Applied Surface Science, Vol.255, pp.7825-7830(2009).
Guliants V V, “Structure-reactivity relationships in oxidation of C4 hydrocarbons on supported vanadia catalysts”, Catalysis Today, Vol.51, pp.255-268(1999).
Hall B, Schager P and Lindurvist O, “Chemical reactions of mercury in combustion flue gases”, Water, Air, and Soil Pollution, Vol.56, pp.15-20(1991).
Ide Y, Kashiwabara K, Okada S, Mori T and Hara M, “Catalytic decomposition of dioxin from MSW incinerator flue gas”, Chemosphere, Vol.32, pp.189-198(1996).
Jones J and Ross J R H, “The development of supported vanadia catalysts for the combined catalytic removal of the oxides of nitrogen and of chlorinated hydrocarbons from flue gases”, Catalysis Today, Vol.35, pp. 97-105(1997).
Kamata H, Ueno Shun-ichiro, Naito T, Yamaguchi A and Ito S, “Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst”, Catalysis Communications, pp.2441–2444(2008).
Kellie S, Duan Y, Cao Y, Chu P, Mehta A, Carty R, Liu K, Pan W P and Riley J T, “Mercury emissions from a 100 MW wall fired boiler as measured by semicontinuous mercury monitor and Ontario Hydro Method”, Fuel Processing Technology, Vol.85, pp.487-499(2004).
Kim D W, Kim M H and Ham S W, “An on-line infrared spectroscopic system with a modified multipath white cell for direct measurements of N2O from NH3-SCR reaction”, Korean Journal of Chemical Engineering, Vol.27(6), pp.1730-1737(2010).
Kinoshita K and Kim K, “Carbon: Electrochemical and physicochemical properties,” John Wiley and Sons(1987).
Ko C H and Raoo R, “Imaging the channels in mesoporous molecular sieves with platinum”, Journal of the Chemical Society, Chemical Comunications, Vol.21, pp.2467-2468(1996).
Koyano K A and Tatsumi T, “Synthesis of titanium-containing MCM-41”, Microporous Materials, Vol.10, pp.259-271(1997).
Kramlich J C, Cole J A, McCarthy J M and Lanier W S, “Mechanisms of nitrous oxide formation in coal flames”, Combustion and Flame, Vol.77, pp.375-384(1989).
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C and Beck J S, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Nature, Vol.359, pp.710-712(1992).
Krishnamoorthy S, Baker J P and Amiridis M D, “Catalytic oxidation of 1,2-dichlororbenzene over V2O5/TiO2-based catalysts”, Catalysis Today, Vol.40, pp. 39-46(1998).
Kucherov A V, Shigapov A N and Ivanov A V, “Distribution and properties of catalytically active Cu2+-sites on a mesoporous MCM-41 silicate modified by Al, Zr, W, B, or P ions”, Catalysis Today, Vol.110, pp.330-338(2005).
Lange N A, “Handbook of chemistry, McGraw–Hill,” New York, pp. 288-290(1976).
Lee C W, Srivastava R K, Ghorishi S B, Karwowski J, Hastings T W and Hirschi J C, “Pilot scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases”, Journal of the Air & Waste Management Association, Vol.56, pp.643-649(2006).
Lee Y S, Surjadi D and Rathman J F, “Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates”, Langmuir, Vol.12, pp.6202-6210(1996).
Li Q, Hou X, Yang H, Ma Z, Zhenga J, Liua F, Zhang X and Yuan Z, “Promotional effect of CeOX for NO reduction over V2O5/TiO2-carbon nanotube composites”, Journal of Molecular Catalysis A: Chemical,Vol.356, pp.121-127(2012).
Li Z and Gao L, “Synthesis and characterization of MCM-41 decorated with CuO particles”, Journal of the Chinese Chemical Society, Vol. 64, pp.223-228(2003).
Licate A, Balles E and Schuttetnhelm W, “Mercury control alternative for coal-fired power plants”, 10th Annual NAWTEC Conference, Orlando, USA (2002).
Liljelind P, Unsworth J, Maaskant O and Marklund S, “Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction”, Chemosphere, Vol.42, pp.615-623(2001).
Liu Y, Wang Y, Wang H and Wu Z, “Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol–gel method”, Catalysis Communications, pp.1291-1294(2011).
Lohuis J A O, Tromp P J J and Moulijn J A, “Parametric study of N2O formation in coal combustion”, Fuel 71, pp.9-14(1992).
Lutter R and Irwin E, “Mercury in the environment: A volatile problem”, Environment, Vol.44, pp.24-40(2002).
Ma H, Baino F, Fiorilli S, Brovarone C V and Onida B, “Al-MCM-41 inside a glass–ceramic scaffold: A meso–macroporous system for acid catalysis”, Journal of the European Ceramic Society, pp.1535-1543(2013).
Martin T, Galarneau A, Di Renzo F, Brunel D, Fajula F, Heinisch S, Cretier G and Rocca J.-L, “Great improvement of chromatographic performance using MCM-41 spheres as stationary phase in HPLC”, Chemistry of Materials, Vol.16, PP.1725-1731(2004).
Mckay G, “Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review”, Chemical Engineering Journal, Vol.86, pp.343-368(2002).
Milligan M S and Altwicker E, “The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxin and dibenzofurans and low-temperature carbon gasification in fly ash”, Environmental Science and Technology, Vol.27, pp.1595-1601(1993).
Miller J A and Bowman C T, “Mechanism and modeling of nitrogen chemistry in combustion”, Progress Energy and Combustion Science, Vol.15, pp.287-338(1989).
Ogawa H, Orita N, Horaguchi M, Suzuki T, Okada M and Yasuda S, “Dioxin reduction by sulfur component addition”, Chemosphere, Vol.32, pp.151-157(1996).
Okumura M, Akita T, Haruta M, Wang X, Kajikawa O and Okada O, “Multi-component noble metal catalysts prepared by sequential deposition precipitation for low temperature decomposition of dioxin”, Applied Catalysis B: Environmental, Vol.41, pp. 43-52(2003).
Qi F, Chu W and Xu B, “Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate”, Applied Catalysis B: Environmental, pp.324-332(2013).
Sakurai T and Weber R, “Laboratory test of SCR catalysts regarding the destruction efficiency towards aromatic and chlorinated aromatic hydrocarbons”, Organohalogen Compound, Vol.36, pp.103-108(1998).
Sayari A, “Catalysis by crystalline mesoporous molecular sieves”, Chemistry of Materials, Vol.8, pp.1840-1852(1996).
Selvaraj M, Pandurangan A, Seshadri K S, Sinha P K and Lal K B,“Synthesis, characterization and catalytic application of MCM-41 mesoporous molecular sieves containing Zn and Al”, Applied Catalysis A-General, Vol.242, pp.347-364(2002).
Shaw J T, “Emissions of nitrogen oxides in fluidized-bed combustion and applications”, Applied Science Publishers, London and New York, Chap. 6, pp.227-260(1983).
Shaub W M and Tsang W, “Dioxin formation in incinerators”, Environmental Science and Technology, Vol.17, pp.721-730(1983).
Shikada T, Fujimoto K, Tominaga H, Kanekoand S and Kubo Y, “Reduction of nitric oxide with vanadium oxide catalysts supported on homogeneously precipitated silica-titania”, Industrial & Engineering Chemistry Product Research and Development, Vol.20, pp.91-95(1981).
Shindo T, Kudo H, Kitabayashi S and Ozawa S, “Applicability of MCM-41 as column packing in HPLC for the evaluation of aluminum species in partially neutralized aluminum solutions”, Microporous and Mesoporous Materials, Vol.63, pp.97-104(2003).
Soler-Illia G J de A A, Sanchez C, Lebeau B and Patarin J, “Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures”, Chemical Review, Vol.102, pp.4093-4138(2002).
Stieglitz L and Vogg H, “On formation conditions of PCDD PCDF in fly-ash from municipal waste incinerators”, Chemosphere, Vol.16, pp.1917-1922(1987).
Swain E B, “Mercury: source and environment fate”, Presentation at the Mercury Contamination Reduction Initiative Workshop, St. Paul, Minnesota, (1997).
Vidya K, Dapurkar S E, Selvam P, Badamali S K and Gupta N M, “The entrapment of UO2+2 in mesoporous MCM-41 and MCM-48 molecular sieves”, Microporous and Mesoporous Materials, Vol.50, pp.173–179(2001).
Vogg H, Metzger M and Stieglitz L, “Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration”, Waste Management and Research, Vol.5, pp.285-294(1987).
Wachs I E and Weckhuysen B M, “Structure and reactivity of surface vanadium oxide species in oxide supports”, Applied Catalysis A: General, Vol.157, pp.67-90(1997)
Wauthoz P, Ruwet M, Machej T and Grange P, “Influence of preparation method on the V2O5/TiO2/SiO2 catalysts in selective catalysts reduction of nitric oxide with Ammonia”, Applied Catalysis, Vol.69, pp.149-167(1991).
Weber R, Sakurai T and Hagenmaier H, “Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts”, Applied Catalysis B: Environmental, Vol.20, pp.249-256(1999).
Wu C-G and Bein T, “Conducting polyaniline filaments in a mesoporous channel host”, Science, Vol.264, pp.1757-1759(1994).
Wu C-G and Bein T, “Polyaniline wires in oxidant-containing mesoporous channel hosts”, Chemistry of Materials, Vol.6, pp.1109-1112(1994).
Xu J Q, Chu W and Luo S Z, “Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability”, Journal of Molecular Catalysis A-Chemical, Vol.256, pp.48-56(2006).
Xu X, Song C, Miller B G and Scaroni A W, “Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41”, Industrial & Engineering Chemistry Research, Vol.44, pp.8113-8119(2005).
Zhang X, Li X, Wu J, Yang R and Zhang Z, “Selective catalytic reduction of NO by ammonia on V2O5/TiO2 catalyst prepared by sol–gel method”, Catalysis Letters, pp.235–238(2009).
Zhenping Z C, Zhenyu L, Shoujun L, Hongxian N, Tiandon H and Tao L, “NO reduction with NH3 over an actived carbon-supported copper oxide catalysts at low temperature”, Applied Catalysis B: Environmental,Vol.26, pp.25-35(2000).
王奕凱、邱宏明、李秉傑,非均勻系催化原理與應用,渤海堂文化事業有限公司,1988。
李宗穎,中孔洞金屬氧化物之合成研究,碩士論文,國立成功大學環境工程學研究所,台南市,2006。
林立桓,二氧化鈦修飾之含鉻鈦MCM-41分子篩之製備、結構特性與催化性質,碩士論文,國立中央大學化學研究所,中壢市,2003。
林亮毅,以Ti-MCM-41與V-Ti-MCM-41分子篩光觸媒同時處理VOCs及NOx之研究,碩士論文,國立交通大學環境工程研究所,新竹市,2008。
吳榮宗,工業觸媒概論,國興出版社,1989。
張君正、張木彬,氮氧化物生成機制與控制技術之探討,工業污染防治,第50期,1994。
劉鎮宗,土壤中有毒重金屬的清道夫,環境工程會刊,第七卷,第一期,1995。
劉瑾瑜,以中孔徑矽分子篩作為氣相PAHs吸附劑之探討,碩士論文,國立中央大學化學研究所,中壢市,2007。
楊文毅,鈀觸媒氧化焚化廢氣中有機物之研究,國立中興大學環工所碩士論文,2000。
傅正豪,活性碳擔體觸媒對酸性氣體之研究,碩士論文,國立中興大學環工所,2003。
賴正昕,劉國棟,黃自立,選擇性觸媒還原法排煙脫硝系統控制實務,工業污染防治,第57期,1996。