| 研究生: |
張庭培 Ting-Pei Chang |
|---|---|
| 論文名稱: |
單光子放射顯微鏡系統之 取樣完整性與影像分析 Sampling Completeness and Image Quality Analysis of Single Photon Emission Microscope |
| 指導教授: | 陳怡君 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 單光子放射顯微鏡 、取樣完整性 、影像分析 |
| 外文關鍵詞: | SPEM, Sampling Completeness Coefficient, Image Quality Analysis |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針孔式單光子放射電腦斷層掃描系統(SPECT)為生醫影像研究上的重要利器,在實際系統開發建構前,若能以模擬計算獲得系統的取樣完整性與影像品質評估,可有效降低硬體開發試誤的成本。基於此想法,本研究引入七針孔的單光子放射顯微鏡系統來進行模擬上的取樣完整性演算及影像重建品質的分析。
在模擬的演算上,取樣完整性係數(Sampling Completeness Coefficient, SCC)是由圖伊條件(Tuy’s Condition)在電腦斷層掃描系統下所建立,並修改適用於SPECT系統。我們使用此方法評估七針孔單光子放射電腦斷層掃描系統之取樣完整性,包含圓軌跡與螺旋軌跡的掃描,投影至直徑40 mm之閃爍晶石偵測器,來完成取樣完整性之評估。
而影像品質分析上,我們藉由實驗取得之通量模型與寬度模型數據,建立影像系統矩陣(H matrix),搭配自主建立之假體模型(Phantom)及最大可能性之期望值最大化演算法(MLEM)來進行影像投影與重建,評估在圓軌跡與螺旋軌跡下之影像品質。並由結果的分析可初步驗證,在進行影像系統建立或實際取像前,可以由取樣完整性的分析來評估不同系統設計或不同軌跡繞行下之影像品質,節省系統開發所需的花費與時間。
Abstract
In this thesis, we use the seven-pinhole single photon emission microscope system (SPEM), which is a version of single photon emission computed tomography (SPECT) system, to simulate the sampling completeness coefficient and analyze the image quality. In order to lessen the development cost, we simulated the system architecture to predict the results and make sure that the system works properly.
In the simulation process, the Sampling Completeness Coefficient (SCC) is based on Tuy’s condition in a cone-beam CT system. We utilize it to evaluate the SCC of seven-pinhole single photon emission microscope system when an object is projected with circular and helical orbits onto the scintillator with 40 mm diameter.
To acquire high quality images, we need an accurate imaging system matrix, called H matrix, which is established from the flux and width models by using the experimental data. The H matrix is used to forward-project the simulated phantoms and the Maximum Likelihood Expectation Maximization (MLEM) algorithm is used for image reconstruction. The results show that SCC values are consistent with the reconstructed image quality. Therefore, the SCC analysis can be used to evaluate the system architecture, in terms of geometry designs and orbit paths, before building the actual system to lessen the cost and save time.
[1] Available: https://en.wikipedia.org/wiki/X-ray.
[2] National Research Council Institute Medicine, Mathematics and Physics of Emerging Biomedical Imagin, National Academy Press Washington, USA, 1996.
[3] Available: https://en.wikipedia.org/wiki/Nuclear_medicine.
[4] M. A. D. Reis, J. Mejia, I. R. Batista, M. R. F. F. D. Barboza, and S. A. Nogueira, et al., “SPEM: A state-of-the-art instrument for high resolution molecular imaging of small animal organs,” SciELO Einstein (São Paulo), vol. 10, no. 2, pp. 209-215, 2012.
[5] J. Mejia, M.A. Reis, A.C.C. Miranda, I.R. Batista, and M.R.F.Barboza, etal.,“Performance assessment of the single photon emission microscope:high spatial resolution SPECT imaging of small animal organs,” SciELOBrazilian Journal of Medical and Biological Research , vol. 46,no. 11, pp. 936-942, 2013.
[6] G. L. Zeng, “A Skew-Slit Collimator for Small-Animal SPECT,” Journal of Nuclear Medicine Technology, 36, 4, 207-212, 2008.
[7] H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM J. Appl. Math., vol. 43, no. 3, pp. 546-552, 1983.
[8] G. L. Zeng, Medical Image Reconstruction A Conceptual Tutorial, High
Education Press, Beijing, 2010.
[9] W. Z Huang, “Helical Trajectory Design of Multi-Pinhole Micro- SPECT Based on Sampling Completeness,” National Central University, Master thesis, 2015.
[10] G. L. Zeng, G. T. Gullberg, “Helical SPECT Using Axially Truncated Data,” IEEE Trans.Nucl. Sci.vol. 46,no. 6, pp. 2112-2118, 1999.
[11] B. Liu, J. Bennett, G. Wang, “Completeness map evaluation demonstrated with candidate next-generation cardiac CT architectures,” Med. Phys. 39, pp. 2405-2416, May 2012.
[12] G. S. P. Mok, Y. Wang, B. M. W. Tsui, “Quantification of the multiplexing effects in multi-pinhole small animal SPECT: a simulation study,” IEEE Trans. Nucl. Sci. 56 2636-2643, 2009.
[13] N. U. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe and T. M. Be--hr, “High-resolution SPECT using multipinhole collimation,” IEEE Trans. Nucl. Sci. 50 315–320, 2003.
[14] J. Y. Hesterman, M. A. Kupinski, L. R. Furenlid, D. W. Wilson and H. H. Barrett, “The multi-module, multi-resolution system (M3R): a novel small-animal SPECT system,” Med. Phys. 34 987–93, 2007.
[15] B. Y Huang, “System Calibration and Imaging Model Construction of Single Photon Emission,” National Central University, Master thesis, 2017.
[16] R. J. Jaszczak, “Nuclear imaging phantom,” U. S. Patent 4499375, 1985.
[17] F. V. D. Have, B. Vastenhouw, M. Rentmeester, and F. J. Beekman, “System calibration and statistical image reconstruction for ultra-high resolution stationary pinhole SPECT,”IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960-971, 2008.
[18] R. Accorsi, and S. D. Metzler, “Analytic Determination of the Resolution-Equivalent Effective Diameter of a Pinhole Collimator,” IEEE Trans. Med. Imag., Vo1. 23, No. 6, pp. 750-763, 2004.
[19] K. V. Audenhaege, R. V. Holen, S. Vandenberghe, C. Vanhove, S. D. Metzler, and S. C. Moore, “Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging,” Med. Phys. 42, pp. 4796-4813, 2015
[20] L. A. Shepp, and Y. Vardi, “ Maximum Likelihood Reconstruction for Emission Tomography,” IEEE Trans. Med. Imag., Vol. 1, No. 2, pp. 113-122, 1982.
[21] H. H. Barrett, and K. J. Myers, Foundations of Image Science, Wiley Interscience, Hoboken, N. J., 2004.