| 研究生: |
周韋辰 Wei-Chen Zhou |
|---|---|
| 論文名稱: |
金屬粉末射出成型隨形水路模具設計製造與成型分析 |
| 指導教授: |
賴景義
Jiing-Yih Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 金屬粉末射出成型 、隨形水路 、金屬積層製造 、模流分析 |
| 外文關鍵詞: | Metal injection molding, Conformal cooling channel, Metal additive manufacturing, Mold flow analysis |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬粉末射出成型(Metal injection molding, MIM)為一種結合塑膠射出成型與粉末冶金工藝優點的製程技術,適合成型高精度、高強度、幾何形狀複雜的金屬零件。其製程由粉末與黏結劑之混煉、模具設計、射出成型、至後製程之脫脂、燒結與二次加工,涵蓋技術範圍甚廣。而模具設計的成敗決定產品開發的成敗,直接影響MIM生產技術的效率及品質,但傳統2D冷卻水路可能不容易解決多模腔模具溫度分佈不均勻的問題,而造成產品的成型缺陷。本研究發展一整合性技術針對MIM產品的成型製造,其技術為模流分析、隨形水路設計、金屬積層製造和CNC加工之MIM模具開發技術,並透過實際射出成型試驗與分析,探討此一整合性技術的可行性。最終,藉由模具冷卻系統之優化設計,提高MIM產品的冷卻效率與模具溫度的均勻性,不僅成功縮短生產的製程週期,並且提升產品品質。
Metal injection molding (MIM) is a process technology that combines the advantages of plastic injection molding and powder metallurgy technology, and that is suitable for manufacturing metal parts with high precision, high strength and complex geometry. The manufacturing process covers a wide range of technologies, including mixing of powder and binder, mold design, injection molding, degreasing, sintering and secondary processing in the post-process. The success of mold design determines the success of product development, which directly affects the efficiency and quality of MIM production technology. However, conventional 2D cooling channels may not be easy to deal with the problem of non-uniform temperature distribution for multi-cavity molds, and may cause shaping defects of the product. In this study, we develope an integrated technology for the MIM product shaping and manufacturing, including MIM mold development technology for mold flow analysis, conformal cooling channel design, metal additive manufacturing and CNC processing. Also, through actual injection molding test and analysis the feasibility of this integrated technology is discussed. Finally, through the optimized design of the mold cooling system, the cooling efficiency of the MIM product and the uniformity of the mold temperature are improved, which not only successfully shortens the production process cycle, but also improves the product quality.
[1] 蔡家聰:〈投資效益評估與價值創造-金屬粉末〉,東海大學碩士論文,2017。
[2] S. C. Hu and K. S. Hwang, Powder Metallurgy, Vol. 43, 2000, pp. 239-244.
[3] M. Thornagel, “Simulating flow can help avoid mould mistakes,” Metal Powder Report, Vol. 65, No. 3, 2010, pp. 26-29.
[4] M. Thornagel, “Injection moulding simulation: New developments offer rewards for the PIM industry,” Powder Injection Moulding International, Vol. 6, No. 1, 2012, pp. 65-68.
[5] Moldex3D: http://www.moldex3d.com/ch/
[6] E. Sachs, E. Wylonis, S. Allen, M. Cima and H. Guo, “Production of injection molding tooling with conformal cooling channels using the three dimensional printing process,” Polymer Engineering and Science, Vol. 40, No. 5, 2000, pp. 1232-1247.
[7] C. Yan and A. Hsu, “Introduction of composite technology, combining machining with selective laser melting for metal powder forming,” Molding Innovation, 2012, pp. 5-10.
[8] F. H. Hsu, K. Wang, C. T. Huang, and R. Y. Chang, “Investigation on conformal cooling system design in injection moulding,” Advances in Production Engineering & Management, Vol. 8, No. 2, 2013, pp. 107-115.
[9] Qiao, H., “A systematic computer-aided approach to cooling system optimal design in plastic injection molding,” International Journal of Mechanical Sciences, Vol. 48, No. 4, 2006, pp. 430-439.
[10] H. S. Park and X. P. Dang, “Optimization of conformal cooling channels with array of baffles for plastic injection mold,” International Journal of Precision Engineering and Manufacturing, Vol. 11, No. 6, 2010, pp. 879-890.
[11] X. P. Dang and H. S. Park, “Design of U-shape milled groove conformal cooling channels for plastic injection mold,” International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 1, 2011, pp. 73-84.
[12] “Laser Additive Manufacturing: Going Mainstream,” https://www.osa-opn.org/home/articles/volume_28/february_2017/features/laser_additive_manufacturing_going_mainstream/
[13] Matsuura: https://www.matsuura.co.jp/
[14] eos: https://www.eos.info/en/additive-manufacturing/3d-printing-metal
[15] Sodick: https://www.sodick.co.jp/en/
[16] Siegfried Mayer, “Optimized mould temperature control procedure using DMLS,” EOS Whitepaper, 2009.
[17] Polyplastics: https://www.polyplastics.com/en/
[18] J. P. Beaumont, Runner and Gating Design Handbook: Tools for Successful Injection Molding, Carl Hanser Verlag, Munich, 2004.
[19] 羅壬成:〈模流分析與射出成型控制參數的優化〉,國立交通大學碩士論文,2006。
[20] 陳佑朋:〈槍機卡榫模流分析參數最佳化之研究〉,國立中央大學碩士論文,2018。
[21] 劉傳仁:〈異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究〉,國立中央大學碩士論文,2019。
[22] 陳夏宗、李海梅、周文祥和陳清祺主編,射出成型原理與製程,五南出版社,2014。
[23] 有方廣洋著,射出成形的不良對策,歐陽渭城譯,全華圖書股份有限公司,2007。
[24] 王茂齡、張榮語和許嘉翔主編,模流分析理論與實務,科盛科技股份有限公司,2018。