跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊世緯
Shih-wei Yang
論文名稱: 利用經驗格林函數法探討板塊介面及內部地震對台灣北部地區強地動之影響
The assessment of strong-ground motion impact to the north Taiwan for inter- and intra-plate earthquakes using Empirical Green’s Function Method
指導教授: 馬國鳳
Kuo-Fong Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 經驗格林函數
外文關鍵詞: EGF, SMGA
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從實際觀測最大加速度強地動值(PGA)資料中顯示,在隱沒帶系統中,板塊內部(Intra-plate)地震與板塊介面(Inter-plate)地震有明顯差異,故本研究利用經驗格林函數法(Empirical Green’s Function method),探討板塊內部地震與板塊介面其地震強地動產生區域面積(SMGA)及應力降之差異。於此,我們選用由中央氣象局強地動觀測計畫(TSMIP)所收錄的地震資料,計算震源位置相近的大地震與小地震之震源平均頻譜比。我們採用與大地震震源距離相近的小地震當做經驗格林函數,且使用均接收到大地震及小地震波形之測站,以除去場址效應及路徑效應。在假設震源遵守 模型的特性下,利用震源頻譜比擬合法,我們可以對觀測資料震源平均頻譜比進行擬合,計算大地震與小地震之拐角頻率,進一步推估大地震相對於小地震的尺度比值(N)和應力降比值(C)。利用這些參數,可以進一步地進行強地動波形模擬及求得大地震之SMGA及應力降。
    結果顯示,板塊內部地震的強地動產生區域面積較小,因此具有較大之應力降,其應力降約為70(bar)至120(bar)之間,而板塊介面地震的應力降約為35(bar)至45(bar)。再者,將模擬最大加速度強地動值(PGA)及實際觀測PGA值與強地動衰減式進行比較,應力降較小的板塊介面地震,實際觀測值與模擬值均落在衰減式平均值範圍內,而應力降較大的板塊內部地震,部分實際觀測值與模擬值則偏離衰減式過大。可見強地動衰減式對於應力降較大之地震的PGA值有低估之現象,此分析結果告訴我們,在隱沒帶系統中,板塊內部地震在地震防災中應予以重視。


    Observations of peak ground acceleration (PGA) for subduction zone earthquakes show significant diversity in PGA intensity between intra-plate earthquakes and inter-plate earthquakes. In this study, we estimated the strong motion generation area (SMGA) and stress drop for inter- and intra-plate earthquakes using empirical Green’s function method to depict their characteristics. .We used acceleration seismograms of Taiwan Strong Motion Instrumentation Program, and sorted data of main events with smaller events nearby. The ratio of source spectrum mean for a large event to a small event thus excludes the path and site effect. Under assumptions of -square source model the spectral ratio is fitted by non-linear square spectrum fitting to get corner frequency of main event (fcm) and the one of small event (fca). The ratio of fault dimension(N) and stress drop(C) for main event to smaller one was also estimated. With these parameters, we simulated full waveforms, virtual SMGA and stress drop for the large event. Our results show that the intra-plate earthquakes have smaller SMGA and larger stress drop than inter-plate earthquakes. The stress drop of intra-plate earthquakes and inter-plate earthquakes is 70-120 bar and 35-15 bar, respectively. The synthetic PGA for both inter-plate earthquakes and intra-plate earthquakes are similar to the observation ones. Comparing to the statistic PGA attenuation curve, the standard deviations of observation and synthetic PGA for inter-plate earthquakes are in one sigma, but the ones for intra-plate earthquake are larger than one sigma. It suggests that the statistic attenuation curve has a underestimation to large stress drop of ntra-plate earthquakes, which should be paid more attenuation in seismic hazard assessment.

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文範疇及內容 4 第二章 研究方法 9 2.1 經驗格林函數法(Empirical Green’s Function Method) 9 2.2 震源頻譜擬合法 (Source spectral fitting method) 12 2.3 波形擬合度殘差值與理論震源參數設定 14 第三章 資料處理與流程 22 3.1 隱沒帶地震分類 22 3.2 地震資料之選取與處理流程 23 第四章 強地動模擬結果與分析 41 4.1板塊內部(Intra-plate)地震強地動模擬 41 4.1.1 1996/07/29 20:20(UT)板塊內部地震 41 4.1.2 模擬結果與討論 42 4.2 板塊介面(Inter-plate)地震強地動模擬 44 4.2.1 2002/05/28 16:45(UT)板塊介面地震 44 4.2.2 模擬結果與討論 45 4.3 隱沒帶地震綜合結果 46 第五章 討論 67 5.1 強地動與應力降之間的關係 67 5.2 模擬PGA值與強地動衰減式比較 68 5.3 隱沒帶地震主頻的比較 69 第六章 結論與未來展望 77 參考文獻 78 附錄 (A) 81

    Angelier, J., E. Barrier, and H. T. Chu, Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan. Tectonophysics, 125, 161-178, 1986.
    Brune, J. N., Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997-5009, 1970.
    Brune, J. N., Correction, J. Geophys. Res., 76, 5002, 1971.
    Byrne, D. E., D. M. Davis, and L. R. Syker. Loci maximum size of thrust earthquakes and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction, Tectonics, 7, 833-857, 1988.
    Hartzell, S. H., Earthquake aftershocks as Green’s function, Geophys.Res. Lett., 5, 1-4, 1978.
    Si H. and S. Midorikawa, New attenuation relationships for peak ground acceleration and velocity considering effects of fault type and site condition, J. Struct. Constr. Eng., AIJ, No. 523, 63-70, 1999.
    Irikura, K., Prediction of strong acceleration motion using empirical Green’s function, Proc. 7th Janpan Earthquake Symp., 151-156, 1986.
    Irikura, K. and K. Kamae, Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique, Annali Di Geofisica., 37, 1721-1743, 1994.
    Irikura, K., T. Kagawa, and H. Sekiguchi, Revision of the empirical Green’s function method by Irikura (1986), Programme and abstracts, Seism. Soc. Japan, 2, B25,1997.
    Kanamori, H. and D. L. Anderson, Theoretical basic of some empirical relations in seismology. Bull. Seismol. Soc. Am., 65, 1073-1095, 1975.
    Kanamori, H., William H.K. Lee, and K. F. Ma, Revisiting the 1909 Taipei Earthquake Implication for Seismic Hazard in Taipei, Geophys. J. Int. Submited.
    K. Kamae, T. Ikeda, & S. Miwa, Source model composed of asperities for the 2004 Mid Niigata Prefecture, Japan, earthquake(MJMA=6.8) by the forward modeling using the empirical Green’s function method, Earth Planets, 57, 533-538, 2005.
    Lay T. and Wallace T.C., Moden Global Seismology, 472-473, Elsevier, Oxford, 1995.
    Miyake, H., T. Iwata, and K. Irikura, Strong ground motion simulation and source modeling of the Kagoshima-ken Hokuseibu earthquakes of March 26(MJMA6.5) and May 13 (MJMA6.3), 1997, using empirical Green’s function method, Zisin., 51, 431-442, 1999.
    Miyake, H., T. Iwata, K. Irikura, Source Characterization for Braodband Ground-Motion Simulation: Kinematic Heterogeneous Source Model and Strong Motion Generation Area, Bull. Seismol. Soc. Am., 93, 2531-2545, 2003.
    Ng, S.M., Angelier, J. & Chang, C.P., Earthquake cycle in Western Taiwan: Insights from historical seismicity, Geophys. J. Int. 178, 753-774, 2009.
    Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada. Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seism. Res. Lett., 70, 59-80, 1999.
    Tichelaar B. W. and L.J. Ruff, Depth of seismic coupling along subduction zone, J. Geophys. Res., 98, 2017-2037, 1993.
    Yen, Y. T and K. F. Ma, Source-Scaling Relationship for M 4.6–8.9 Earthquakes, Specifically for Earthquakes in the Collision Zone of Taiwan, Bull. Seismo.l Soc. Am., 101, 464–481, 2011.
    Youngs, R. R., S.-J. Chiou, W. J. Silva, and J.R. Humphrey. Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes, Seism. Res. Lett. 68, 1, 58-73,1997.
    Wu, Y. M., J. B. H. Shyu, C. H. Chang, L. Zhao, M. Nakamura, and S. K. Hsu. Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys. J. Int. 178, 1042–1054, 2009.
    W. Suzuki and T. Iwata, Source model of the 2005 west off Fukuoka prefecture earthquake estimated from the empirical Green’s function simulation of broadband strong motions, Earth Planets, 58, 99-104, 2006.
    陳燕玲,台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,1997。
    林柏伸,台灣東北部地區隱沒帶地震強地動衰減式之研究,國立中央大學地球物理研究所碩士論文,2002。
    顏銀桐,台灣地區有限斷層錯動量分怖尺度分析及模擬,國立中央大學地球物理研究所博士論文,2011。

    QR CODE
    :::