跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林柏亨
Po-Heng, Lin
論文名稱: Optical Characterization of Nanofilms and Metalenses via Ellipsometry
指導教授: 王智明
Chih-Ming, Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學研究所碩士在職專班
Executive Master of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 115
中文關鍵詞: 橢圓偏振量測嚴格耦合波分析先穎透鏡色散模型
外文關鍵詞: Ellipsometry, RCWA, Metalens, Dispersion model
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立了一套整合橢圓偏振量測、Tauc–Lorentz 色散模型與嚴格耦合波分析法(RCWA)的完整工作流程,旨在全面性地表徵非晶矽薄膜以及奈米級週期性光柵結構。我們首先運用 Tauc–Lorentz 色散模型擬合非晶矽的橢圓偏振參數 Ψ 與 Δ 光譜,獲得最佳化的薄膜厚度(62.64 nm)與入射角度(60.52°)。所提取的介電常數進一步透過 Kramers–Kronig 關係驗證其物理自洽性。

    接著,利用 RETICOLO, 一套使用在 MATLAB 的 RCWA 求解器,我們系統性探討 60°–70° 入射角範圍、佔空比(0.3–0.7)、蝕刻深度(91–111 nm)以及光柵週期(726 nm 與 1033 nm)對 TE/TM 反射率以及橢圓偏振參數 Ψ 與 Δ 在 250–1200 nm 波段與內的影響。模擬結果與實驗數據展現出極佳的一致性,顯示在布魯斯特角附近 TM 波顯著抑制。

    最後,我們提出一套適用於先穎透鏡量測的多點、多角度量測策略:選擇 AOI = 60° 作為穩定的基線,以及 AOI = 70° 作為敏感檢測奈米級非均勻性的量測條件。此方法能為薄膜與奈米結構元件提供穩健的線上製程監控,並加速光柵與先穎透鏡的設計優化。


    This work develops an integrated workflow combining spectroscopic ellipsometry, the Tauc–Lorentz dispersion model, and rigorous coupled-wave analysis (RCWA) to comprehensively characterize amorphous silicon thin films and nanoscale periodic grating structures.

    We first employ the Tauc–Lorentz formalism to fit ellipsometric Ψ and Δ spectra of amorphous silicon, achieving optimized film thickness (62.64 nm) and incidence angle (60.52 ° ). Physical self ‐ consistency of the extracted refractive index and extinction coefficient is confirmed via Kramers–Kronig relations. Next, using the RETICOLO RCWA solver, we systematically investigate the influence of 60°–70° AOI, duty cycle (0.3–
    0.7), etch depth (91–111 nm), and grating period (726 nm vs. 1033 nm) on TE/TM reflectance and ellipsometric parameters across 250–1200 nm. Simulation and experimental data exhibit excellent agreement, revealing pronounced TM suppression at Brewster’s angle. Finally, we propose a multi‐point, multi‐angle measurement strategy for metalens metrology: AOI = 60° for a stable baseline and AOI = 70° for sensitive detection of nanoscale nonuniformities. This methodology offers robust in‐line process monitoring for thin ‐ film and nanostructured photonic devices and accelerates design optimization of gratings and metalenses.

    Chapter 1: Introduction, 1 1.1 Motivation, 1 1.2 Objective, 1 1.2.1. Determination of Thin Film Optical Constants, 1 1.2.2. Analysis of Periodic Structural Parameters, 2 1.3 Essay Structure,3 1.3.1 Introduction, 3 1.3.2 Theoretical Foundations of Spectroscopic Ellipsometry, 3 1.3.3 Experimental Design and Methodology, 4 1.3.4 Data Analysis and Interpretation, 4 1.3.5 Conclusion and Prospective Research Directions, 5 Chapter 2: Literature Review, 5 2.1 Fundamental Principles of Spectroscopic Ellipsometry, 6 2.1.1 Core Concepts and Mathematical Formulation, 6 2.1.2 Ellipsometric Equations and Their Derivation, 7 2.1.3 Discussion, 8 2.2 Data Analysis Methodologies and Dispersion Models, 8 2.2.1 Optical Parameter Extraction, 8 2.2.2 Dispersion Models, 10 2.2.3 Model Comparison and Selection, 12 2.3 Computational Modeling of Periodic Structures, 13 2.3.1 Fundamentals of RCWA, 13 2.3.2 Numerical Implementation and Extensions, 14 2.3.3 Integration with Optimization Techniques, 16 2.3.4 Summary, 16 2.4 Global Optimization in Optical Modeling, 17 2.4.1 Overview of Global Optimization Methods, 17 2.4.2 Hybrid Optimization Strategies, 19 2.4.3 Integration with RCWA-Based Modeling, 20 2.4.4 Summary and Future Outlook, 21 2.5 Summary and Future Perspectives, 21 2.5.1 Summary of Key Points, 22 2.5.2 Future Perspectives and Trends, 23 2.5.3 Concluding Remarks, 25 Chapter 3: Theoretical Foundations of Spectroscopic Ellipsometry, 26 3.1 Fundamental Principles of Ellipsometry, 26 3.1.1 Core Concepts and Mathematical Formulation, 26 3.1.2 Derivation of the Ellipsometric Equations, 26 3.2 Data Analysis Methodologies, 32 3.2.1 Extraction of Optical Parameters, 32 3.2.2 Introduction to Dispersion Models, 36 3.2.3 Conclusion, 40 3.3 Computational Modeling of Periodic Structures, 40 3.3.1 Fundamentals of the Rigorous Coupled-Wave Analysis (RCWA), 40 3.3.2 Key Features of RCWA, 40 3.3.3 Advantages of RCWA, 41 3.3.4 Practical Implementation in Reticolo, 41 3.3.5 Conclusion, 43 3.4 Thin-Film Characterization, 43 3.5 Workflow for Simulating Ψ and Δ Spectra, 46 3.5.1 Data Import, 46 3.5.2 Define the Tauc-Lorentz Model Function, 47 3.5.3 Define the Ellipsometric Calculation Function, 48 3.6 Optimization Strategies for Model Fitting, 50 3.6.1 Define the Objective Function for Optimization, 50 3.6.2 Perform Optimization & Compute Final Optical Constants, 50 3.6.3 Calculate Final Results, 51 3.7 Optimization Strategies for Model Fitting, 52 3.7.1 Implementation Framework for RCWA Simulations, 54 Chapter 4: Data Analysis and Interpretation, 58 4.1 Analysis of Thin-Film Optical Properties, 58 4.1.1 Core Concepts and Mathematical Formulation, 58 4.1.2 Evaluation of AOI and optical constants, 59 4.1.3 Evaluation of Kramers–Kronig Relations, 60 4.2 Periodic Structure Simulation Analysis, 63 4.2.1 Influence of Structural Parameters on TE and TM Reflection, 63 4.2.2 Influence of Structural Parameters on Ψ and Δ, 68 4.3 Analysis of Grating measurement results, 75 4.3.1 Influence of Structural Parameters on Ψ and Δ, 75 4.3.2 Analysis of Δ Variation in Grating Structures, 78 4.3.3 Analysis of Simulation Results, 81 4.4 Analysis and Measurement Methodologies for Metalens Structures, 84 4.4.1 Analysis of Ψ Variation in Metalens Structures, 86 4.4.2 Analysis of Δ Variation in Metalens Structures, 88 4.4.3 Developing a Practical Metrology Methodology, 90 Chapter 5: Conclusions and Recommendation, 92 5.1 Key Findings and Discussion, 92 5.1.1 Discussion of Thin‐Film Optical Properties, 92 5.1.2 Periodic Structure Simulation vs. Experiment, 93 5.1.3 Validation of Metalens Measurement Methodology, 94 5.2 Limitations and Future Work, 94 5.2.1 Modeling and Numerical Simulation Limitations, 94 5.2.2 Experimental Measurement and Fabrication Variability, 95 5.2.3 Future Research Directions, 95 5.3 Practical Recommendations and Future Applications, 96 5.3.1 In‐Line Process Monitoring, 96 5.3.2 Photonic Device Design Optimization, 97 References List, 98

    [1] Kudla, A. (2004). Application of the genetic algorithms in spectroscopic ellipsometry. Thin Solid Films, 455, 804-808.
    [2] Jarem, J. M., & Banerjee, P. P. (2016). Computational methods for electromagnetic and optical systems. CRC press.
    [3] Likhachev, D. V. (2017). Model selection in spectroscopic ellipsometry data analysis: Combining an information criteria approach with screening sensitivity analysis. Applied Surface Science, 421, 617-623.
    [4] Jellison, G. E. (2005). Data analysis for spectroscopic ellipsometry. In Handbook of Ellipsometry (pp. 237-296). Springer, Berlin, Heidelberg.
    [5] Moroni, G., Syam, W. P., & Petrò, S. (2014). Performance improvement for optimization of the non-linear geometric fitting problem in manufacturing metrology. Measurement Science and Technology, 25(8), 085008.
    [6] M. E. Lee, C. Galarza, W. Kong, W. Sun, and F. L. Terry, Jr., “Analysis of Reflectometry and Ellipsometry Data from Patterned Structures,” 1999.
    [7] H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Chichester, UK: John Wiley & Sons, 2007.
    [8] H. Fujiwara and R. W. Collins, Spectroscopic Ellipsometry for Photovoltaics, Berlin, Germany: Springer, 2019.
    [9] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, New York, NY: John Wiley & Sons, 2002.
    [10] J. P. Hugonin and P. Lalanne, RETICOLO: Software for Grating Analysis, Institut d’Optique, Orsay, France, 2021.
    [11] Choi, H., Baek, J. W., & Jung, K. Y. (2019). Comprehensive study on numerical aspects of modified Lorentz model-based dispersive FDTD formulations. IEEE Transactions on Antennas and Propagation, 67(12), 7643-7648.
    [12] Gil, J. J. (2000). Characteristic properties of Mueller matrices. Journal of the Optical Society of America A, 17(2), 328-334.
    [13] Kajtár, G. ANALYSIS OF PERIODIC STRUCTURES USING RCWA.
    [14] Lee, Y. J., Kim, Y. H., Park, C. M., & Yang, J. K. (2023). Analysis of optical propagation characteristics of the ultra-long period grating using RCWA. Applied Optics, 62(9), 2376-2385.
    [15] Lalanne, P., & Lemercier-Lalanne, D. (1996). On the effective medium theory of subwavelength periodic structures. Journal of Modern Optics, 43(10), 2063-2085.
    [16] Weismann, M., Gallagher, D. F., & Panoiu, N. C. (2015). Accurate near-field calculation in the rigorous coupled-wave analysis method. Journal of Optics, 17(12), 125612.
    [17] Bischoff, J. (2009, March). Improved diffraction computation with a hybrid C-RCWA-method. In Metrology, Inspection, and Process Control for Microlithography XXIII (Vol. 7272, pp. 1154-1165). SPIE.
    [18] Choi, H., Lee, K., Doh, J., Jeong, J., Kwag, T., Kim, M., ... & Kim, D. S. (2023). Sensitivity enhancement in OCD metrology by optimizing azimuth angle based on the RCWA simulation. Solid-State Electronics, 200, 108574.
    [19] Jarem, J. M., & Banerjee, P. P. (2016). Computational methods for electromagnetic and optical systems. CRC press.
    [20] Mohamad, H., Essaidi, S., Blaize, S., Macias, D., Benech, P., & Morand, A. (2020). Fast Fourier factorization for differential method and RCWA: a powerful tool for the modeling of non-lamellar metallic diffraction gratings. Optical and Quantum Electronics, 52, 1-13.
    [21] Van Der Aa, N. P. (2006). Diffraction grating theory with RCWA or the C method. In Progress in Industrial Mathematics at ECMI 2004 (pp. 99-103). Springer Berlin Heidelberg.
    [22] Erni, D., Wiesmann, D., Spuhler, M., Hunziker, S., Moreno, E., Oswald, B., ... & Hafner, C. (2000, July). Application of evolutionary optimization algorithms in computational optics. In ACES (Vol. 15, No. 2, pp. 43-60).
    [23] SCHERQVIST HALLDNER, L. U. D. W. I. G. (2023). Global optimization of optical metasurfaces using the RCWA method.
    [24] Faraji, M., Esmaeili, A., & Shirzad, A. (2018). A comparison among the results of various dispersion relations for the ellipsometric data of Mn: ZnO thin films using PSO algorithm. Physica B: Condensed Matter, 545, 125-133.
    [25] Abdulraheem, Y., Gordon, I., Bearda, T., Meddeb, H., & Poortmans, J. (2014). Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD. AIP Advances, 4(5).

    QR CODE
    :::