| 研究生: |
林柏亨 Po-Heng, Lin |
|---|---|
| 論文名稱: | Optical Characterization of Nanofilms and Metalenses via Ellipsometry |
| 指導教授: |
王智明
Chih-Ming, Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學研究所碩士在職專班 Executive Master of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 橢圓偏振量測 、嚴格耦合波分析 、先穎透鏡 、色散模型 |
| 外文關鍵詞: | Ellipsometry, RCWA, Metalens, Dispersion model |
| 相關次數: | 點閱:29 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立了一套整合橢圓偏振量測、Tauc–Lorentz 色散模型與嚴格耦合波分析法(RCWA)的完整工作流程,旨在全面性地表徵非晶矽薄膜以及奈米級週期性光柵結構。我們首先運用 Tauc–Lorentz 色散模型擬合非晶矽的橢圓偏振參數 Ψ 與 Δ 光譜,獲得最佳化的薄膜厚度(62.64 nm)與入射角度(60.52°)。所提取的介電常數進一步透過 Kramers–Kronig 關係驗證其物理自洽性。
接著,利用 RETICOLO, 一套使用在 MATLAB 的 RCWA 求解器,我們系統性探討 60°–70° 入射角範圍、佔空比(0.3–0.7)、蝕刻深度(91–111 nm)以及光柵週期(726 nm 與 1033 nm)對 TE/TM 反射率以及橢圓偏振參數 Ψ 與 Δ 在 250–1200 nm 波段與內的影響。模擬結果與實驗數據展現出極佳的一致性,顯示在布魯斯特角附近 TM 波顯著抑制。
最後,我們提出一套適用於先穎透鏡量測的多點、多角度量測策略:選擇 AOI = 60° 作為穩定的基線,以及 AOI = 70° 作為敏感檢測奈米級非均勻性的量測條件。此方法能為薄膜與奈米結構元件提供穩健的線上製程監控,並加速光柵與先穎透鏡的設計優化。
This work develops an integrated workflow combining spectroscopic ellipsometry, the Tauc–Lorentz dispersion model, and rigorous coupled-wave analysis (RCWA) to comprehensively characterize amorphous silicon thin films and nanoscale periodic grating structures.
We first employ the Tauc–Lorentz formalism to fit ellipsometric Ψ and Δ spectra of amorphous silicon, achieving optimized film thickness (62.64 nm) and incidence angle (60.52 ° ). Physical self ‐ consistency of the extracted refractive index and extinction coefficient is confirmed via Kramers–Kronig relations. Next, using the RETICOLO RCWA solver, we systematically investigate the influence of 60°–70° AOI, duty cycle (0.3–
0.7), etch depth (91–111 nm), and grating period (726 nm vs. 1033 nm) on TE/TM reflectance and ellipsometric parameters across 250–1200 nm. Simulation and experimental data exhibit excellent agreement, revealing pronounced TM suppression at Brewster’s angle. Finally, we propose a multi‐point, multi‐angle measurement strategy for metalens metrology: AOI = 60° for a stable baseline and AOI = 70° for sensitive detection of nanoscale nonuniformities. This methodology offers robust in‐line process monitoring for thin ‐ film and nanostructured photonic devices and accelerates design optimization of gratings and metalenses.
[1] Kudla, A. (2004). Application of the genetic algorithms in spectroscopic ellipsometry. Thin Solid Films, 455, 804-808.
[2] Jarem, J. M., & Banerjee, P. P. (2016). Computational methods for electromagnetic and optical systems. CRC press.
[3] Likhachev, D. V. (2017). Model selection in spectroscopic ellipsometry data analysis: Combining an information criteria approach with screening sensitivity analysis. Applied Surface Science, 421, 617-623.
[4] Jellison, G. E. (2005). Data analysis for spectroscopic ellipsometry. In Handbook of Ellipsometry (pp. 237-296). Springer, Berlin, Heidelberg.
[5] Moroni, G., Syam, W. P., & Petrò, S. (2014). Performance improvement for optimization of the non-linear geometric fitting problem in manufacturing metrology. Measurement Science and Technology, 25(8), 085008.
[6] M. E. Lee, C. Galarza, W. Kong, W. Sun, and F. L. Terry, Jr., “Analysis of Reflectometry and Ellipsometry Data from Patterned Structures,” 1999.
[7] H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Chichester, UK: John Wiley & Sons, 2007.
[8] H. Fujiwara and R. W. Collins, Spectroscopic Ellipsometry for Photovoltaics, Berlin, Germany: Springer, 2019.
[9] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, New York, NY: John Wiley & Sons, 2002.
[10] J. P. Hugonin and P. Lalanne, RETICOLO: Software for Grating Analysis, Institut d’Optique, Orsay, France, 2021.
[11] Choi, H., Baek, J. W., & Jung, K. Y. (2019). Comprehensive study on numerical aspects of modified Lorentz model-based dispersive FDTD formulations. IEEE Transactions on Antennas and Propagation, 67(12), 7643-7648.
[12] Gil, J. J. (2000). Characteristic properties of Mueller matrices. Journal of the Optical Society of America A, 17(2), 328-334.
[13] Kajtár, G. ANALYSIS OF PERIODIC STRUCTURES USING RCWA.
[14] Lee, Y. J., Kim, Y. H., Park, C. M., & Yang, J. K. (2023). Analysis of optical propagation characteristics of the ultra-long period grating using RCWA. Applied Optics, 62(9), 2376-2385.
[15] Lalanne, P., & Lemercier-Lalanne, D. (1996). On the effective medium theory of subwavelength periodic structures. Journal of Modern Optics, 43(10), 2063-2085.
[16] Weismann, M., Gallagher, D. F., & Panoiu, N. C. (2015). Accurate near-field calculation in the rigorous coupled-wave analysis method. Journal of Optics, 17(12), 125612.
[17] Bischoff, J. (2009, March). Improved diffraction computation with a hybrid C-RCWA-method. In Metrology, Inspection, and Process Control for Microlithography XXIII (Vol. 7272, pp. 1154-1165). SPIE.
[18] Choi, H., Lee, K., Doh, J., Jeong, J., Kwag, T., Kim, M., ... & Kim, D. S. (2023). Sensitivity enhancement in OCD metrology by optimizing azimuth angle based on the RCWA simulation. Solid-State Electronics, 200, 108574.
[19] Jarem, J. M., & Banerjee, P. P. (2016). Computational methods for electromagnetic and optical systems. CRC press.
[20] Mohamad, H., Essaidi, S., Blaize, S., Macias, D., Benech, P., & Morand, A. (2020). Fast Fourier factorization for differential method and RCWA: a powerful tool for the modeling of non-lamellar metallic diffraction gratings. Optical and Quantum Electronics, 52, 1-13.
[21] Van Der Aa, N. P. (2006). Diffraction grating theory with RCWA or the C method. In Progress in Industrial Mathematics at ECMI 2004 (pp. 99-103). Springer Berlin Heidelberg.
[22] Erni, D., Wiesmann, D., Spuhler, M., Hunziker, S., Moreno, E., Oswald, B., ... & Hafner, C. (2000, July). Application of evolutionary optimization algorithms in computational optics. In ACES (Vol. 15, No. 2, pp. 43-60).
[23] SCHERQVIST HALLDNER, L. U. D. W. I. G. (2023). Global optimization of optical metasurfaces using the RCWA method.
[24] Faraji, M., Esmaeili, A., & Shirzad, A. (2018). A comparison among the results of various dispersion relations for the ellipsometric data of Mn: ZnO thin films using PSO algorithm. Physica B: Condensed Matter, 545, 125-133.
[25] Abdulraheem, Y., Gordon, I., Bearda, T., Meddeb, H., & Poortmans, J. (2014). Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD. AIP Advances, 4(5).