跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳麒聰
Chi-Tsung Chen
論文名稱: 內熱整合型蒸餾塔之理論板數估算
Estimation of theoretical stages of Heat Integrated Distillation column(HIDiC)
指導教授: 李亮三
Liang-sun Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 75
中文關鍵詞: 內熱整合蒸餾塔理論板數
外文關鍵詞: HIDiC, heat integrated distillation column, theoritical stage, Ponchon-Savarit method
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內熱整合型蒸餾塔(Heat Integrated Distillation Column, HIDiC)其原理主要是利用蒸餾塔的精餾段(rectifying section)與汽提段(stripping section)進行熱轉移,將精餾段所移出的熱,來供給汽提段加熱之用。理論上在傳統的蒸餾操作下,精餾段的溫度比汽提段低,並無法傳熱給汽提段,因此在HIDiC的設計上就必須提高精餾段的操作壓力,使整段的溫度分布高於汽提段,且其間必須裝設有蒸汽再壓縮機將汽提段的汽相傳送到精餾段,以完成整個蒸餾操作。
    一般蒸餾塔設計初期,皆會依產物的組成來推估建塔時的理論板數,由於內部熱整合蒸餾技術是目前新的技術,目前國內外文獻無系統化提出此新式蒸餾塔之理論板數估算。因此在本論文中,介紹一般傳統蒸餾塔二成份之圖解板數估算法,如:McCabe-Thiele法與Ponchon-Savarit法,以及如何利用Ponchon-Savarit法來估算內熱整合型蒸餾塔之理論板數。
    本論文以Ponchon-Savairt法成功估算二成份系統(如:苯與甲苯、甲醇與水)之HIDiC理論板數,並且與已發表之文獻所提供的模擬數值加以比較,最後提出一使用Hxy圖來估算理論板數之步驟。


    In the convectional distillation column, the temperature profile of the rectifying section is lower than that of the stripping section. The principle of the Heat Integrated Distillation Column, generally called as HIDiC, is the internal heat integration between the rectifying and the stripping sections of a distillation column by adding a compressor to increase the temperature of the rectifying section.
    In general, if the separation of two components is specified, the number of theoretical stages of a distillation column could be calculated by the McCabe-Thiele method or Ponchon-Savarit method during the preliminary design stage. Several HIDiC design data, such as, number of theoretical stages, feed conditions, reboiler duty, internal heat transfer, configuration, etc., can easily be interpreted in the enthalpy-concentration diagram (abbreviated as Hxy diagram) were discussed in this study. Besides, a preliminary HIDiC design procedure using Hxy diagram is also proposed in this study.
    The graphical estimation of internal stages of HIDiC by the Ponchon-Savarit method has been applied to two binary systems, benzene-toluene and methanol-water, and were compared to the literature.

    中文摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 符號說明 Ⅹ 第一章 緒論 1 第二章 文獻回顧 3 第三章 理論分析 6 3-1 McCabe-Thiele法與Ponchon-Savarit法於一般蒸餾塔板數估算 6 3-1-1 McCabe-Thiele法理論回顧 6 3-1-2 Ponchon-Savarit法理論回顧 7 3-2 Ponchon-Savarit法於HIDiC板數估算 11 3-2-1 HIDiC總質量均衡與進料板分析 11 3-2-2 HIDiC之內部熱傳量分析 12 3-2-3 HIDiC之精餾段分析 13 3-2-4 HIDiC之汽提段分析 14 第四章 HIDiC之操作變數分析 17 4-1 HIDiC之進料狀況分析 17 4-2 HIDiC之內部板回流比推導 17 4-3 最少熱傳速率 19 第五章 以Ponchon-Savarit法估算二成份系統之HIDiC理論板數 21 5-1 苯與甲苯 21 5-2 甲醇與水 22 5-3 建塔組態與McCabe-Thiele圖 25 第六章 結論與未來展望 28 參考文獻 29 表 31 圖 35 附錄A 71 附錄B 73 附錄C 74

    AspenTech, Aspen Plus, version 11.1, Aspen Technology Inc., 2001.
    Fitzmorris, R. and R. Mah, “Improving Distillation Column Design Using Thermodynamic Availability Analysis,” AIChE J. 1980, 26(2) ,265.
    Huang, K., M. Nakaiwa and T. Akiya, “A Numerical Consideration on Dynamic Modeling and Control of Ideal Heat Integrated Distillation Columns, ” J. Chem. Eng. Japan, 1996a , 29(2), 344.
    Huang, K., M. Nakaiwa, T. Akiya and M. Owa, ”Dynamics of Ideal Heat Integrated Distillation Columns,” J. Chem. Eng. Japan, 1996b, 29(4), 108.
    Huang, K., M. Nakaiwa, M. Owa and T. Akiya, “Determining Appropriate Configuration of Ideal Heat Integrated Distillation Columns (HIDiC),” J. Chem. Eng. Japan, 1997, 30(3), 575.
    Huang, K., M. Nakaiwa, M. Owa, T. Akiya, T. Nakane, M. Sato and T. Takamatsu, ”Identification and Internal Model Control of an Ideal Heat Integrated Distillation Column,” J. Chem. Eng. Japan, 1998, 31(1), 159.
    McCabe, W. L., Thiele, E. W. “Graphical design of fractionating columns.” Journal of Industrial and Engineering Chemistry (Washington, D. C.), 1925, 17, 605-11.
    McCabe, W. L., Smith, J. C., and Harriott, P., Unit Operations of Chemical Engineering, 6th ed., McGraw-Hill Book Co., 2001.
    Mah, R., J. J. Nicholas and R. B. Wodnik, “Distillation with Secondary Reflux and Vaporization: A Comparative Evaluation,” AIChE J., 1977, 23, 651.
    Nakaiwa, M., K. Huang, M. Owa, T. Akiya, T. Nakane, M.
    Sato, T Takamatsu and H. Yoshitome, “Potential Energy
    Savings in Ideal Heat-Integrated Distillation Column,” Appl. Thermal Eng., 1998a, 18, 1077.
    Nakaiwa, M., K. Huang, M. Owa, T. Akiya and T. Nakane, ”Operating an Ideal Heat Integrated Distillation Column with Different Control Algorithns,” Comput. Chem. Engng,. 1998b, 22, 389.
    Nakaiwa, M., K. Naito, K. Huang, A. Endo, K. Aso, T. Nakanishi, T. Nakamura, H. Noda and T. Takamatsu, ”Operation of a Bench-Scale Ideal Heat Integrated Distillation Column (HIDiC): an Experimental Study,” Comput. Chem. Eng., 2000, 24, 495.
    Nakaiwa, M., K. Huang, K. Naito, A. Endo, T. Akiya, T. Nakane and T. Takamatsu, “Parameter Analysis and Optimization of Ideal Heat Integrated Distillation Columns,” Comput.Chem. Eng., 2001, 25, 737.
    Nakaiwa, M., K. Huang, A. Endo, T. Ohmori, T. Akiya and T. Takamatsu, “Internally Heat-Integrated Distillation Columns: A Review,” Trans. IChE., Part A, 2003, 81, 162.
    Olujic, Z., F. Fakhri, A Rijke, J. Graauw, P. Jansens, “Internal Heat Integration-the Key to an Energy-Conserving Distillation Column,” J. Chem. Tech. Biotech., 2003, 78, 241.
    Ponchon, M. “Application of graphs to the study of commercial fractional distillation. ” Technique Moderne, 1921, 13, 20-4, 55-8.
    Savarit, P. “Graphic study of distilling columns for binary and ternary mixtures.” Chimie et Industrie (Paris), 1923, Special No. 737-56.
    Smith, B. D., Design of Equilibrium Stage Processes, McGraw-Hill Book Co, 1963.
    Takamatsu, T., M. Nakaiwa, K. Huang, T. Akiya, H. Noda, T. Nakanishi and K. Aso, ”Simulation Oriented Development of a New Heat Integrated Distillation Column and its Characteristics for Energy Saving,” Comput. Chem. Engng,. 1997, 21, 243.

    QR CODE
    :::