| 研究生: |
張佑偵 Yu-Chen Chang |
|---|---|
| 論文名稱: |
產業依存與跨產業報酬預測性:機器學習方法之應用 |
| 指導教授: |
徐之強
Chih-Chiang Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 經濟學系 Department of Economics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | Lasso 、OLS post-Lasso 、預測迴歸模型 |
| 外文關鍵詞: | Lasso, OLS post-Lasso, Predictive regression |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以台灣股票市場的產業加權指數報酬作為預測標的,建構產業輪動投資組合,探討Lasso迴歸是否真的有助於投資決策,通過實證結果發現,樣本內結果顯示前一期產業報酬對於個別產業報酬有一定的預測能力,台灣各產業間存在連動性,且個別產業能預測其他產業以及被其他產業預測的預測能力不一。紡織纖維類、金融保險業、資訊服務業及建材營造類常被Lasso選擇預測其他產業的超額報酬率。此外,本文基於OLS post-Lasso方法去建構產業輪動投資組合,將預測出來的報酬率分五等分位,做多(做空)預測超額報酬率較好(較差)的產業加權指數,發現OLS post-Lasso投資組合的表現尚可,其年化平均超額報酬率和夏普比率均高於使用OLS來建構的投資組合,同時,OLS post-Lasso的投資組合在景氣較不好期間有較好的投資表現。
This paper uses the industry-weighted index returns of Taiwan stock market as the target of forecast, constructs an industry-rotation portfolio, and explores whether Lasso regression is really helpful for investment decision-making. The in-sample results show that some industries can predict the excess return of other industries. The textile fiber, finance and insurance industry, information service industry, and building construction industry are often selected by Lasso to predict the excess return of other industries. In addition, this paper constructs an industry-rotation portfolio based on OLS post-Lasso, buys (sells) industry-weighted indexes that predicts highest (lowest) excess returns , and finds that the portfolio based on OLS post-Lasso has not bad performance, and its annual average excess return and sharpe ratio are both higher than the portfolio based on OLS. At the same time, the portfolio based on OLS post-Lasso has better investment performance during periods of bad economic conditions.
英文文獻
Al-Fayoumi, N. A., B. A. Khamees and A. A. Al-Thuneibat (2009), “Information transmission among stock return indexes: Evidence from the Jordanian stock market,” International Research Journal of Finance and Economics, 24, 194-208.
Belloni, A. and V. Chernozhukov (2013), “Least squares after model selection in high-dimensional sparse models,” Bernoulli, 19, 521-547.
Bessler, W. and D. Wolff (2017), “Portfolio optimization with industry return prediction models,” 30th Australasian Finance and Banking Conference, Available at SSRN: https://ssrn.com/abstract=3011135.
Diebold, F. and K. Yilmaz (2012), “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillover,” International Journal of Forecasting, 28, 57-66.
Driesprong, G., B. Jacobsen and B. Maat (2008), “Striking oil: another puzzle?” Journal of Financial Economics, 89, 307-327.
Eleswarapu, V. R. and A. Tiwari (1996), “Business cycles and stock market returns: Evidence using industry‐based portfolios,” Journal of Financial Research, 19, 121-134.
Gidofalvi, G. and C. Elkan (2001), “Using news articles to predict stock price movements,” Department of Computer Science and Engineering, University of California, San Diego.
Hoerl, A. E. and R. W. Kennard (1970), “Ridge regression: Biased estimation for nonorthogonal problems,” Technometrics, 12, 55-67.
Hong, H., W. Torous and R. Valkanov (2007), “Do industries lead the stock market?” Journal of Financial Economics, 83, 367-396.
Hurvich, C. M. and C.-L. Tsai (1989), “Regression and time series model selection in small samples,” Biometrika, 76, 297-307.
Li, Q., T. Wang, P. Li, L. Liu, Q. Gong and Y. Chen (2014), “The effect of news and public mood on stock movements,” Information Sciences, 278, 826-840.
Rapach, D. E., J. Strauss, J. Tu and G. Zhou (2015), “Industry interdependencies and cross-industry return predictability,” Working Paper, Washington University in St. Louis.
Rapach, D. E., J. K. Strauss, J. Tu and G. Zhou (2019), “Industry return predictability: A machine learning approach,” The Journal of Financial Data Science, 1, 9-28.
Taddy, M. (2017), “One-step estimator paths for concave regularization,” Journal of Computational and Graphical Statistics, 26, 525-536.
Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288.
Wang, S., B. Ji, J. Zhao, W. Liu and T. Xu (2018), “Predicting ship fuel consumption based on LASSO regression,” Transportation Research Part D: Transport and Environment, 65, 817-824.
Welch, I. and A. Goyal (2008), “A comprehensive look at the empirical performance of equity premium prediction,” The Review of Financial Studies, 21, 1455-1508.
Zhang, Y., F. Ma and Y. Wang (2019), “Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?” Journal of Empirical Finance, 54, 97-117.
Zhao, P. and B. Yu (2006), “On model selection consistency of Lasso,” The Journal of Machine Learning Research, 7, 2541-2563.
Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” Journal of the American Statistical Association, 101, 1418-1429.
Zou, H. and T. Hastie (2005), “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320.
中文文獻
郝沛毅、歐仁彬、黃天受、林振穎、吳建生(2018), “透過新聞文章預測股價漲跌趨勢-結合情緒分析、主題模型與模糊支持向量機,” 資訊管理學報, 25, 363-395。
張倉耀(2013), “原油價格及其波動與台灣股價指數長期關係之探討,” 會計與財金研究, 6, 47-64。
郭維裕、李淯靖、陳致綱、林建秀 (2015), “台灣產業指數的外溢效果,” 經濟論文叢刊, 43, 407-442。
黃台心、鍾銘泰、楊淳如 (2015), “運用向量誤差修正模型探討台灣各產業與股市大盤間資訊傳遞速度,” 管理與系統, 22, 1-31。