| 研究生: |
蕭逸凡 Yi-fan Siao |
|---|---|
| 論文名稱: |
永久散射體雷達干涉技術應用於地表變遷偵測 Detection of Surface Displacements by a PSInSAR Technique |
| 指導教授: |
吳究
Joz Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 合成孔徑雷達干涉技術 、永久散射體 、數值地形模型 |
| 外文關鍵詞: | DInSAR, PS, DTM, InSAR |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以遙測方式獲取土地資訊具有涵蓋面積廣、花費較低廉以及資料易於取得等優勢,且隨著太空科技之發展,繞行固定軌道之衛星更具長期監測之能力。合成孔徑雷達影像係藉由雷達天線主動發射並接收其地表反射訊號來探求地表資訊,除可穿透雲、雨、濛、霧外,亦具有全天候監測能力。
但同一地區不同時間所拍攝之兩幅影像,由於拍攝間隔時間長、且基線長度不一,導致差分合成孔徑雷達干涉技術於應用在台灣這種地貌變化大且多植被的地方成果不佳。故本研究藉由偵測出自然界中的永久散射體於影像中的點位,進而得到該點位的長時間的地形變化量。
而過去永久散射體雷達干涉技術所使用的估算模型,是將整幅影像的視角與斜距以影像的中心像元之數值為代表,這種模型對觀測地區落於影像中心的情況是合理的簡化;但是台灣地區較多人口的區域是落於影像的邊緣地帶,採取中心像元之數值的方式就顯得不恰當。故本論文改用適應性模型依據各個像點給值,使得成果能更加精確。
論文成果發現,使用適應性模型對於觀測的成果確實有所改善,若是能夠改良候選點的挑選方式,使其在大範圍的呈現上能夠更密集,對於大範圍的變遷偵測之研究會更有幫助。
Repeat-pass satellite Interferometric SAR(InSAR) is potentially a unique tool for low cost precise Digital Terrain Model(DTM) generation and large-coverage surface deformation monitoring. Differential InSAR(DInSAR) may be used to monitor centimeter-scale surface displacements over large geographic extents. However, the method has limitations set by temporal and geometric decorrelation and atmospheric inhomogeneities.
We present a Persistent Scatterer(PS) InSAR method for analyzing episodic crustal deformation in non-urban environments. This method for identifying PS pixels in a series of interferograms is based primarily on coherence index and finds low-amplitude pixels with phase stability that are not identified by the existing amplitude-based algorithm.
The model which considers linear velocity deformation and DTM error usually using a centre target’s range distance. This method is fit for a test area nearby a centre area, but it’s not suitable for Taiwan’s urban. Taiwan’s urban usually locate in side of SAR images, that let a centre area’s value see not suitable. We chose adaptable range distance instead the fixed value.
Using this method, we identified a density of 4.1 PS/km2. Even for longer than 500 m baselines, the PSInSAR technique can help build land subsidence maps better than differential InSAR does.
呂建興,2001,「使用三軌跡法與ERS資料偵測台灣都市地區地貌變化」,碩士論文,國立成功大學,台南。
陳卉瑄,2001,「差分合成孔徑干涉雷達應用於偵測集集地震地形變之研究」,碩士論文,國立成功大學,台南。
陳鴻緒、蔡展榮,2001,「使用ERS資料與SAR干涉技術在台灣地區求定DEM之實務探討」,第二屆兩岸測繪研討會暨第十七屆測量學術及應用研討會論文集 (一),第35–42頁。
張中白、王志添、王皓正、陳錕山,2002,「應用雷達差分干涉法監測都會型地表變形:以中壢工業區為例」,航測及遙測學刊,第九卷,第三期,第9–14頁。
謝嘉聲,2006,「以雷達干涉技術偵測地表變形之研究」,博士論文,國立交通大學,新竹。
Chang, C. P., Wang, C. T., Chang, T. Y., Chen, K. S., Liang, L. S., Pathier, E., and Angelier, J., 2004, “Application of SAR Interferometry to a Large Thrust Deformation: the 1999 Mw=7.6 Chichi Earthquake in Central Taiwan,” Geophysical Journal International, Vol. 159, No. 50, pp. 9–16.
Chang, C. P., Yen J. Y., Hooper A., Chou F. M., Chen Y. A., Hou C. S., Hung W. C., and Lin M. S., 2010, “Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 21, No. 3, pp. 447–461.
Chen, C. W., and Zebker, H. A., 2000, “Network Approaches to Two-dimensional Phase Unwrapping: Intractability and Two New Algorithms,” Journal of the Optical Society of America A, Vol. 17, No. 3, pp. 401–414.
Chen, C. W., and Zebker, H. A., 2002, “Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 8, pp. 1709–1719.
Colesanti, C., Ferretti, A., Prati, C. and Rocca, F., 2003, “Monitoring Landslides and Tectonic Motions with the Permanent Scatterers Technique.,” Engineering Geology, Vol. 12, No. 68, pp. 3–14.
Crosetto, M., Crippa, B., Biescas, E., Monserrat, O., Agudo, M., and Fernandez, P., 2005, “Land Deformation Monitoring Using SAR Interferometry: State-of-the-art,” Photogrammetrie, Fernerkundung, Geoinformation, Vol. 6, pp. 497–510.
Ferretti, A., Prati, C., and Rocca, F., 2001, “Permanent Scatterers in SAR Interferometry,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 1, pp. 8–20.
Fruneau, B., Pathier, E., Raymond, D., Deffontaines, B., Lee, C. T., Wang, H. T., Angelier, J., Rudant, J. P., and Chang, C. P., 2001, “Uplift of Taiwan Tableland (SW Taiwan) Revealed by SAR Interferometry,” Geophysical Research Letters, Vol. 28, No. 16, pp. 3071–3074.
Gabriel, A. K., and Goldstein, R. M., 1988, “Crossed Orbit Interferometry: Theory and Experimental Results from SIR-B,” International Journal of Remote Sensing, Vol. 9, No. 5, pp. 857–872.
Gabriel, A. K., Goldstein, R. M., and Zebker, H. A., 1989, “Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry,” Journal of Geophysical Research, Vol. 94, No. 7, pp. 9183–9191.
Gens, R., and van Genderen, J. L., 1996, “SAR Interferometry-issues, Techniques, Applications,” International Journal of Remote Sensing, Vol. 17, No. 10, pp. 1803–1835.
Ghiglia, D. C., and Romero, L. A., 1994, “Robust Two-dimensional Weighted and Unweighted Phase Unwrapping that Uses Fast Transform and Iterative Methods,” Journal of the Optical Society of America A, Vol. 11, No. 1, pp. 107–117.
Graham, L. C., 1974, “Synthetic Interferometric Radar for Topographic Mapping,” Proceedings of the IEEE, Vol. 62, No. 6, pp. 763–768.
Hanssen, R., 2001, Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic Publisher, Dordrecht, Netherlands.
Henderson, F. M., and Lewis, A. J., 1998, Principles and Applications of Imaging Radar, John Wiley, New York, USA.
Hooper, A., 2009, StaMPS/MTI Manual, version 3.1, Delft Institute of Earth Observation and Space Systems. Delft University of Technology, Netherlands.
Hooper, A., Segall, P., and Zebker, H., 2007, “Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos,” Journal of Geophysical Research, Vol. 112, No. B1(B07407), 21 pages.
Hooper, A., Zebker, H., Segall, P., and Kampes, B., 2004, “A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers,” Geophysical Research Letters, Vol. 31, No. 5 (L23611), 5 pages.
Huang, M.-H., Hu, J.-C., Hsieh, C.-S., Ching, K.-E., Rau, R.-J., Pathier, E., Fruneau, B., and Deffontaines, B., 2006, “A Growing Structure near the Deformation Front in SW Taiwan Deduced from SAR Interferometry and Geodetic Observation,” Journal of Geophysical Research, Vol. 33, No. 12(L12305), 5 pages.
Kampers, B. M., 2006, Radar Interferometry: Persistent Scatterer Technique, Springer, New York, USA.
Liu, G. X., Ding, X. L., Li, Z. L., Li, Z. W., Chen, Y. Q., and Yu, S. B., 2004, “Pre- and Co-seisimic Ground Deformations of the 1999 Chi-chi, Taiwan Earthquake, Measured with SAR Interferometry,” Computer and Geosciences, Vol. 30, No. 4, pp. 333–343.
Lyons, S., and Sandwell, D., 2003, “Fault Creep Along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking,” Journal of Geophysical Research-Solid Earth, Vol. 108, No. B1(2047), 24 pages.
Massonnet, D., and Feigl, K. L., 1998, “Radar Interferometry and Its Application to Changes in the Earth Surface,” Reviews of Geophysics, Vol. 36, No. 4, pp. 441–500.
Massonnet, D., Holzer, T., and Vadon, H., 1997, “Land Subsidence Caused by the East Mesa Geothermal Field, California, Observed Using SAR Interferometry,” Geophysical Research Letters, Vol. 24, No.8, pp. 901–904.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Fiegl, K., and Rabaute, T., 1993, “The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry,” Nature, Vol. 364, No. 6433, pp. 138–142.
Mora, O., Mallorquí, J. J., and Broquetas, A., 2003, “Linear and Nonlinear Terrain Deformation Maps From a Reduced Set of Interferometric SAR Images,” IEEE Transactions on Geosciences and Remote Sensing, Vol. 41, No. 10, pp. 2243–2253.
Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S. B., and Lee, C. T., 2003, “Coseismic Displacements of the Footwall of the Chelungpu Fault Caused by the 1999, Taiwan Chi-chi Earthquake from InSAR and GPS Data,” Earth and Planetary Science Letters, Vol. 212, No. 1–2, pp. 73–88.
Rabus, B., Eineder, M., Roth, A., and Bamler, R., 2003, “The Shuttle Radar Topography Mission—a New Class of Digital Elevation Models Acquired by Spaceborne Radar,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, No. 4, pp, 241–262
Rogers, A. E. E., Ingalls, R. P., 1969, “Venus: Mapping the Surface Reflectivity by Radar Interferometry,” Science, Vol. 165, No. 3895, pp. 797–799.
Rosen, P., Hensley, S., Joughin, I., Li, F., Madsen, S., Rodriguez, E., and Goldstein, R., 2000, “Synthetic Aperture Radar Interferometry,” Proceedings of the IEEE, Vol. 88, No. 3, pp.333–382.
Suga, Y., Takeuchi, S., Oguro, Y., Chen, A., J., Ogawa, M., Konishi, T., and Yonezawa, C., 2001, “Application of ERS-2/SAR Data for the 1999 Taiwan Earthquake,” Advances in Space Research, Vol. 28, No. 1, pp. 155–163.
Werner, C., Wegmuller, U., Strozzi, T., and Wiesmann, A., 2003, “Interferometric Point Target Analysis for Deformation Mapping,” Proceedings of IEEE Geoscience and Remote Sensing Society, Vol. 7, pp. 4362–4364.
Xia Y., Kaufmann, H., and Guo, X. F., 2004, “Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflector,” Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 10, pp. 1167–1172.
Zebker, H. A., 2000, “Studying the Earth with Interferometric Radar,” Computer in Science and Engineering, Vol. 2, No.3, pp. 52–60.
Zebker, H. A., and Goldstein, R. M., 1986, “Topographic Mapping from Interferometry Synthetic Aperture Radar Observations,” Journal of Geophysical Research, Vol. 91, No. 5, pp. 4993–4999.
Zebker, H. A., Werner, C. L., Rosen, P. A., and Hensley, S., 1994, “Accuracy of Topographic Maps Derived from ERS-1 Interferometric Radar,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, pp. 823–836.
Zisk, S. H., 1972, “A New Earth-based Radar Technique for the Measurement of Lunar Topography,” Moon, Vol. 4, No. 3–4, pp. 296–306.