跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡淑齡
Shu-Ling Tsai
論文名稱: 以凌波為基礎的多重解析度地形模塑與貼圖
Wavelet-based Multiresolution Terrain Modeling and Texture Mapping
指導教授: 曾定章
Din-chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 85
中文關鍵詞: 凌波轉換多重解析度模塑動態載入
外文關鍵詞: Wavelet transform, Multiresolution modeling, Dynamic loading
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文的研究中,我們提出以凌波 (wavelet) 為基礎的多重解析度地形模塑與貼圖。在多重解析度地形模塑方面,我們以凌波分解技術來製作出不同解析度的地形模型。同時配合貼圖的衛星影像也以另一種凌波分解技術來做同樣層次的多重解析度變化。另外配合大區域地形展示的需要,我們發展出動態載入的技術來配合凌波分解多重解析度地形展示。首先我們將整個地形模型分割成為許多較小的矩形地塊。在瀏覽時適時地載入我們所要呈現的地塊;而且每個地塊會根據觀察者到該地塊的距離來決定它該呈現的解析度。本研究的特色有下列幾點: (i) 凌波多重解析度模型會以內插近似的方式 (Interpolating approximation) 來逼近原始精密模型、 (ii) 凌波多重解析度模型與影像的資料不會擴大、 (iii) 我們以整數對整數的凌波分解技術來轉換影像,使得轉換資料完全保存、 及 (iv) 動態載入中不同解析度的相鄰地塊以完全模組化方式快速對應。


    In this paper, techniques of multiresolution terrain modeling and texture mapping based on the wavelet mesh (WM) and wavelet image (WI) are proposed. The WM terrain modeling is also combined with a dynamic loading technique for browsing large terrains. At first, we partition a large terrain mesh into blocks. Then we dynamically load parts of those terrain blocks for browsing. Based on the distance to the viewer, the resolution of each terrain block is automatically adjusted. Additionally, several studies on this topic are also proposed, which are: (i) texture-mapping images with multiresolution form, (ii) adopting rounding technique to avoid loss of image data during wavelet transform, and (iii) solving the boundary matching problems for adjacent terrain blocks in dynamic loading. The proposed techniques are suitable for browsing large terrain models on PC platforms.

    Abstractii Contentsiii List of Figuresv List of Tablesviii Chapter 1 Introduction1 1.1 Motivation of the study1 1.2 An overview of our work2 1.2.1 Terrain modeling4 1.2.2 Wavelet meshes4 1.2.3 Dynamic loading4 1.2.4 Texture-mapping of wavelet images5 1.2.5 User interface5 1.3 Organization of this thesis6 Chapter 2 Related Works7 2.1 Terrain models7 2.1.1 Height fields7 2.1.2 Approximation error7 2.2 Multiresolution structures8 2.2.1 Sequential structures8 2.2.2 Hierarchical structures11 2.3 Mesh simplification14 2.3.1 Vertex decimation14 2.3.2 Vertex clustering16 2.3.3 Mesh subdivision16 2.4 Multiresolution textured images23 Chapter 3 Wavelets Analysis24 3.1 Theory of multiresolution analysis24 3.1.1 Formulation for refinement25 3.1.2 The filter bank27 3.2 Multiresolution analysis for images29 3.2.1 Standard construction30 3.2.2 Nonstandard construction31 3.3 Multiresolution analysis for meshes32 Chapter 4 Wavelet Images and Meshes34 4.1 Wavelet images34 4.1.1 Wavelet images construction34 4.1.2 Data structures for wavelet images38 4.2 Wavelet meshes39 4.2.1 Wavelet meshes construction39 4.2.2 Data structures for wavelet meshes43 Chapter 5 Dynamic Loading45 5.1 Models database45 5.2 Boundary matching of terrain blocks46 5.3 Dynamic loading management51 5.4 Level of detail arbitrator53 Chapter 6 Experiments55 6.1 Wavelet images55 6.2 Wavelet meshes60 6.3 Dynamic loading68 Chapter 7 Conclusions72 References73

    [1] Catmull, E. and J. Clark, "Recursively generated B-spline surfaces on arbitrary topological meshes," Computer-Aided Design, Vol.10, No.6, pp.350-355, 1978.
    [2] Certain, A., J. Popovic, T. DeRose, T. Duchamp, D. H. Salesin, and W. Stuetzle, "Interactive multiresolution surface viewing," in Proc. SIGGRAPH''96, New Orleans, LA, Aug.4-9, 1996, pp.91-98.
    [3] Cohen, J., A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwwal, F, Brooks, and W. Wright, "Simplification envelops," in Proc. of SIGGRAPH''96, New Orleans, LA, Aug.4-9, 1996, pp.119-128.
    [4] DeHaemer, M. J. and M. J. Zyda, "Simplification of objects rendered by polygonal approximations," Computer & Graphics, Vol.15, No.2, pp.175-184, 1991.
    [5] Doo, D. W. H., A Recursive Subdivision Algorithm for Fitting Quadratic Surfaces to Irregular Polyhedrons, Ph.D. dissertation, Brunel University, 1978.
    [6] Doo, D. and M. Sabin, "Behaviour of recursive division surfaces near extraordinary points," Computer-Aided Design, Vol.10, No.6, pp.356-360, 1978.
    [7] Dyn, N., D. Levin, and J. Greory, "A butterfly subdivision scheme for surface interpolation with tension control," ACM Trans. on Graphics, Vol.9, No.2, pp.160-169, 1990.
    [8] Eck, M., T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, "Multiresolution analysis of arbitrary meshes," in Proc. SIGGRAPH''95, Los Angeles, CA, Aug.6-11, 1995, pp.173-182.
    [9] Farin, G., Curves and Surfaces for Computer Aided Geometric Design, third edition, Academic Press, Boston, 1993.
    [10] Finkelstein, A. and D. H. Salesin, "Multiresolution curves," in Proc. SIGGRAPH ''94, Orlando, Florida, Jul.24-29, 1994, pp.261-268.
    [11] Floriani, L. D., B. Falcidieno, and C. Pienovi, "A hierarchical data structure for surface approximation," Compute Graphics, Vol.8, pp.475-484, 1984.
    [12] Floriani, L. D., "A pyramidal data structure for triangle-based surface description," IEEE Computer Graphics & Applications, Vol.9, No.2, pp.67-78, 1989.
    [13] Floriani, L. D. and E. Puppo, "A hierarchical triangle-based model for terrain description," in Theories and Methods of Spatiotemporal Reasoning in Geographic Space, Lecture Notes Computer Science 639, 1992, pp.236-251.
    [14] Floriani, L. D. and E. Puppo, "Hierarchical triangulation for multiresolution surface description," ACM Trans. on Graphics, Vol.14, No.4, pp.363-411, 1995.
    [15] He, T., L. Hong, A. Varshney, and S. W. Wang, "Controlled topology simplification," IEEE Trans. on Visualization and Computer Graphics, Vol.2, No.2, pp.171-184, 1996.
    [16] Garland, M. and P. S. Heckbert, Fast Polygonal Approximation of Terrains and Height Fields, Tech. Report CMU-CS-95-181, Carnegie Mellon Univ., School of Computer Science, Sep. 1995.
    [17] Gross, M. H., "Efficient triangular surface approximations using wavelets and quadtree data structures," IEEE Trans. on Visualization and Computer Graphics, Vol.2, No.2, pp.130-143, 1996.
    [18] Heckbert, P. S. and M. Garland, "Multiresolution modeling for fast rendering," in Proc. of Graphics Interface''94, Banff, Alberta, Canada, May 18-20, 1994, pp.43-50.
    [19] Hoppe, H., T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer, and W. Stuetzle, "Piecewise smooth surface reconstruction," in Proc. of SIGGRAPH''94, Orlando, Florida, Jul.24-29, 1994, pp.295-302.
    [20] Hoppe, H., "Progressive meshes," in Proc. SIGGRAPH''96, New Orleans, LA, Aug.4-9, 1996, pp.99-108.
    [21] Li, P. P., W. H. Duquette, and D. W. Curkendall, "RIVA: A versatile parallel rendering system for interactive scientific visualization," IEEE Trans. on Visualization and Computer Graphics, Vol.2, No.3, pp.186-201, 1996.
    [22] Lin, I.-C. et al., "Reversible wavelet transform," to be submitted, 2000.
    [23] Lindstrom, P., D. Koller, W. Ribarsky, L. F. Hodges, N. Faust, and G. A. Turner, "Real-time, Continues level of detail rendering of height fields," in Proc. of SIGGRPH''96, New Orleans, LA, Aug.4-9, 1996, pp.109-118.
    [24] Loop, C. T., Smooth Subdivision Surfaces Based on Triangles, Master''s thesis, Department of Mathematics, University of Utah, 1987.
    [25] Lounsbery, M., T. DeRose, and J. Warren, "Multiresolution analysis for surfaces of arbitrary topological type," ACM Trans. on Graphics, Vol.16, No.1, pp.34-73, 1997.
    [26] Mallat, S. G., "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.11, No.7, pp.674-693, 1989.
    [27] Puppo, E. and R. Scopigno, Simplification, LOD and Multiresolution - Principles and Applications, Tutorial Notes, Eurographics''97, 1997.
    [28] Quak, E. and N. Weyrich, "Decomposition and reconstruction algorithms for spline wavelets on a bounded interval," Applied and Computational Harmonic Analysis, Vol.1, No.3, pp.217-231, 1994.
    [29] Rossignac, J. R. and P. Borrel, "Multi-resolution 3D approximation for redering complex scenes," in Geometric Modeling in Computer Graphics: Methods and Applications, Springer Verlag, 1993, pp.455-465.
    [30] Samet, H., "The quadtree and related hierarchical data structures," ACM Computer Surveys, Vol.16, No.2, pp.187-260, 1984.
    [31] Scarlatos, L. and T. Pavilids, "Hierarchical triangulation using cartographic coherence," CVGIP: Graphical Models and Image Processing, Vol.54, No.2, pp.147-161, 1992.
    [32] Schroeder, W. J., J. A. Zarge, and W. E. Lorensen, "Decimation of triangle meshes," in Proc. of SIGGRAPH''92, Chicago, Illinois, Jul.26-31, 1992, pp.65-70.
    [33] Shade, J., D. Lischinski, D. H. Salesin, T. DeRose, and J. Snyder, "Hierarchical image caching for accelerated walkthroughs of complex environments," in Proc. of SIGGRAPH''96, New Orleans, LA, Aug.4-9, 1996, pp.75-82.
    [34] Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, "Wavelets for Computer Graphics: A Primer Part 1," IEEE Computer Graphics and Applications, Vol.15, No.3, pp.76-84, 1995.
    [35] Stollnitz, E. J., T. D. DeRose, and D. H. Salesin, "Wavelets for Computer Graphics: A Primer Part 2," IEEE Computer Graphics and Applications, Vol.15, No.4, pp.75-85, 1995.
    [36] Stollnitz, E. J., T. DeRose, and D. H. Salesin, Wavelets for Computer Graphics: Theory and Applications, Morgan-Kaufmann, San Francisco 1996.
    [37] Sweldens, W., The lifting scheme: A Custom-design Construction of Biorthogonal Wavelets, Industrial Mathematics Initiative, University of South Carolina, 1994.
    [38] Turk, G., "Re-tiling polygonal surfaces," in Proc. of SIGGRAPH''92, Chicago, Illinois, Jul.26-31, 1992, pp.55-64.

    QR CODE
    :::