跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳昇叡
Sheng-Rui Wu
論文名稱: 藉由散射強化輻射冷卻發電之研究
Research of scattering-enhanced radiative cooling for power generation
指導教授: 王智明
Chih-Ming Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 輻射冷卻溫差發電米氏散射
外文關鍵詞: Radiant Cooling, Thermoelectric Power Generation, Mie Scattering
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 冷卻是許多設備都需要的裝置,也是耗費大量電力主要因素之一,由於溫室效應越來越嚴重,開發綠色能源也是刻不容緩的事情,本文所做出的結構可以利用大氣窗口,進而造成被動冷卻的效果。而我們使用被動冷卻即是它不需要靠額外所給予的電力,而是藉由本身對於熱輻射波段的特性來冷卻物體,因為大氣窗口是在8~14 μm穿透率非常高的一個波段,熱能不會被大氣層所吸收能傳到外太空,所以我們便利用大氣窗口來實行我們的輻射冷卻。
    我們也利用熱電晶片(TEG)的特性,並結合不同濃度ITO/PVAc薄膜的結構,熱電晶片是藉由賽貝克(seebeck)原理利用晶片裡面的兩塊金屬之間自由電子密度不同和冷熱端溫度不同進而產生電流,我們把ITO/PVAc薄膜塗佈在銅基板上再貼到熱電晶片的冷面,並利用輻射冷卻的特性發電,在環境溫度攝氏22度時1.12 wt% ITO/PVAc薄膜覆蓋在TEG晶片當給予TEG晶片攝氏80度的定熱能可以產生的電流為8.47 mA,模擬淨輻射冷卻功率為469.28 W/m2;10.12 wt% ITO/PVAc薄膜上給予TEG晶片攝氏80度的定熱能可以產生的電流為11.19 mA,模擬淨輻射冷卻功率為937.21 W/m2。把ITO/PVAc薄膜重量百分濃度從1.12 wt%提升到10.12 wt%在給予攝氏80度的定熱能的情況下模擬淨輻射冷卻功率有著467.93 W/m2的提升,實際量測的電流提升2.72 mA。
    1.12 wt% ITO/PVAc薄膜在環境溫度與結構溫度相同時模擬淨輻射冷卻功率為83.04 W/m2,10.12 wt% ITO/PVAc薄膜在環境溫度與結構溫度相同時模擬淨輻射冷卻功率為115.84 W/m2,ITO/PVAc薄膜在室溫下隨著重量百分濃度從1.12 wt%淨輻射冷卻功率83.04 W/m2而 10.12 wt%淨輻射冷卻功率155.84 W/m2兩者相差32.8 W/m2,增加ITO顆粒的濃度就可以增加淨輻射冷卻功率,讓散熱的效率提高,應用在發電也提高發電電量。


    Cooling is a device required by many equipments and one of the main factors that consume a lot of electricity. Due to the increasing greenhouse effect, the development of green energy is also an urgent matter. The structure made in this paper can make use of the atmospheric window, which in turn causes the effect of passive cooling.
    We use passive cooling, which means that it does not require extra power, and uses its own characteristics for the heat radiation band to cool the object, because the atmospheric window is in a band with a very high transmittance of 8~14 μm, thermal energy will not be The energy absorbed by the atmosphere is transmitted to outer space, so we conveniently use the atmospheric window to implement our radiation cooling.
    We coated the ITO/PVAc film on the copper substrate and attached it to the cold surface of the thermoelectric wafer, and used the characteristics of radiation cooling to generate electricity.When the ambient temperature is 22 degrees Celsius, 1.12 wt% ITO/PVAc film is covered on the TEG wafer. When the TEG wafer is given a constant thermal energy of 80 degrees Celsius, the current that can be generated is 8.47 mA, and the simulated net radiant cooling power is 469.28 W/m2. 10.12 wt% ITO/PVAc film given TEG wafer 80 degrees Celsius constant thermal energy can produce 11.19 mA current, simulated net radiation cooling power is 937.21 W/m2.
    The ITO/PVAc film weight percentage concentration was increased from 1.12 wt% to 10.12 wt%. The simulated net radiant cooling power was increased by 467.93 W/m2 under the condition of giving a constant thermal energy of 80 degrees Celsius, and the actual measured current increased by 2.72 mA .1.12 wt% ITO/PVAc film simulates a net radiation cooling power of 83.04 W/m2 when the ambient temperature is the same as the structure temperature,10.12 wt% ITO/PVAc film simulates a net radiation cooling power of 115.84 W/m2when the ambient temperature is the same as the structure temperature, ITO/PVAc film increased from 1.12 wt% to 10.12 wt% at room temperature with a net weight cooling power increase of 32.8 W/m2.Increasing the concentration of ITO particles can increase the net radiant cooling power, so that the efficiency of heat dissipation is improved, and the application in power generation also increases the amount of power generated.

    目錄 摘要 i Abstract iii 致謝 vi 目錄 vii 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1-1 研究背景 1 1-2文獻回顧 2 1-3 論文大綱 7 第二章 基礎原理 10 2-1 輻射冷卻原理 10 2-2 熱電效應 15 2-3 米氏散射 19 第三章 ITO/ PVAc 低成本被動輻射冷卻樣品製備以及其光譜特性量測 ……………………………………………………………………….24 3-1 無機化合物混有機高分子及複合材料特性 24 3-2旋塗薄膜製程 25 3-3 ITO/ PVAc 百分濃度OM與SEM圖 28 3-4 ITO/PVAc FTIR光譜 32 第四章 被動輻射冷卻強化TEG功率 49 4-1 輻射冷卻增強TEG功率量測架構 49 4-2輻射冷卻薄膜之溫場量測 50 4-3 模擬ITO/ PVAc薄膜之淨輻射冷卻功率 54 4-4 輻射冷卻應用-溫差發電 59 4-5輻射冷卻增強TEG I-V Curve 65 第五章 結論 68 參考文獻 70

    1. Vectorized by User:Mysid in Inkscape, original NASA image from File:Atmospheric electromagnetic transmittance or opacity.jpg.
    2. C.S. Kim, G.S. Lee, H. Choi, Y.J. Kim, H. Yang, S.H. Lim, S.G. Lee and B.J. Cho “Structural design of a flexible thermoelectric power generator for wearable applications” Applied Energy Volume 214, 15 march 2018, Pages 131-138
    3. H. Bao, C. Yan, B. Wang, X. Fang, C.Y. Zhao and X. Ruan “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling” Solar Energymaterials and Solar Cells Volume 168, August 2017, Pages 78-84
    4. B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise “Nocturnal and diurnal performances of selective radiators,” Appl. Energy, 3, p. 267-286(1977)
    5. E. Rephaeli, A. Raman and S. Fan, “Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling,” Nano Lett., 13, p.1457-1461(2013)
    6. A.R. Gentle and G.B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett., 10, p. 373-379 (2010)
    7. M.M. Hossain, B. Jia and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. mater., 3, p. 1047-1051 (2015)
    8. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science, 355, p. 1062-1066 (2017)
    9. S.R. Wu, K. L. Lai and C. M. Wang, “Passive temperature control based on a phase change metasurface,” Sci. Rep. 8, 7684 (2018)
    10. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight, ” Nature, 515, 540. (2014)
    11. https://en.wikipedia.org/wiki/Forward-looking_infrared
    12. A. Baltes, “On the validity of Kirchhoff’s law of heat radiation for a body in a nonequilibrium environment,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1976), Vol. 13, pp. 3–25.
    13. https://en.wikipedia.org/wiki/Forward-looking_infrared
    14. X. Zhang, L.D. Zhao, Thermoelectricmaterials: Energy conversion between heat and electricity. J. materiomics 1, 92–105 (2015)
    15. "A.11 Thermoelectric effects". Eng.fsu.edu. 2002-02-01. Retrieved 2013-04-22.
    16. R.Clayton "The GEC Research Laboratories 1919-1984", 1989, p240
    17. 巫振榮,“熱電元件應用",國家奈米元件實驗室/蝕刻薄膜組,奈米通訊20卷,No.4 p32-35
    18. https://zh.wikipedia.org/wiki/%E6%95%A3%E5%B0%84
    19. https://astronomy.stackexchange.com/questions/10771/sunsets-mars-earth
    20. https://en.wikipedia.org/wiki/Mie_scattering
    21. 祁杰倫,“ 藉由光電輔助輻射冷卻增強熱電效應之研究",國立東華大學光電所碩士論文,中華民國一百八年
    22. https://en.wikipedia.org/wiki/Forward-looking_infrared
    23. R. Viskanta “Heat transfer by conduction and radiation in absorbing and scatteringmaterials , ”J. Heat Transfer, 87C (1965), pp. 143-150
    24. H. Yang, F. Kang, C. Ding, J. Li, K. Jaemin, D. Baek, S. Nazarian, X. Lin, P. Bogdan and N. Chang. Prediction-based fast thermoelectric generator reconfiguration for energy harvesting from vehicle radiators. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018.

    QR CODE
    :::