| 研究生: |
劉育祐 Yu-Yu Liu |
|---|---|
| 論文名稱: |
接觸角的遲滯現象研究:液珠與氣泡在傾斜的板子上之行為 Droplets and Bubbles on an Inclined Plane: Contact Angle Hysteresis |
| 指導教授: |
曹恒光
Heng-kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 接觸角的遲滯現象 、傾斜板子 、液珠與氣泡 |
| 外文關鍵詞: | Contact Angle Hysteresis, Droplets and Bubbles, Inclined Plane |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗對於接觸角的遲滯現象進行深入的研究,使用傾斜板法來記錄液珠滑落前之前端與後端(下方與上方) 接觸角,其差異值即為此材質的遲滯角度。
第一部分我們採用兩種材料(壓克力與銅片)來進行傾斜板的實驗,在相同的液珠體積之下製造兩種不同起始接觸角(前進角時與後退角)的液珠,並記錄下隨著傾斜角度而改變的液珠下方角度與上方角度;同樣的,將兩種材質浸泡在水中,在相同的氣泡體積之下製造兩種不同起始接觸角(前進角時與後退角)的氣泡。將壓克力與銅片傾斜時,可觀察到兩種不同的現象,分別是Advancing pinning與Receding pinning的潤濕行為。
第二部份繼續使用傾斜板法,此時我們在一個壓克力上製造一個低遲滯的超疏水表面,並在此超疏水表面上製造一個較親水的缺陷,觀察此缺陷對於水珠的黏滯力與重力抗衡的情形。探討將液珠體積、缺陷的大小與形狀進行改變時,其臨界傾斜角(液珠的滑動角)的相對變化。在改變缺陷的大小發現,只有與重力滑落方向垂直之長度增加時,才會對於臨界傾斜角會有改變;進一步利用三角形的缺陷可加以驗證。
Our experiment is to study the phenomenon of contact angle hysteresis by the inclined plate method. Two substrates (PMMA slice and cooper disc) are used. The front (downhill) and rear (uphill) contact angle of the droplet on the inclined substrate is recorded before the critical inclined angle is achieved where the droplet starts to slide down.
At part 1, the droplets with different initial states (advancing angle and receding angle) are inclined until it slides away. We also immerse the substrated into water and two initial states of bubbles (advancing angle and receding angle) are operated similarly to the droplets. We can find out that the behavior of droplets and bubbles are alike and the advancing pinning and receding pinning phenomena can be generated based on “induced defect.”
At part 2, we use PMMA to make a localized hydrophilic defect on a low hysteresis superhydrophobic surface in order to observe the behavior of adhesion pinning force against gravity force. The variation of droplet volume or defect size with the sliding angle is studied. When droplet slides, the uphill angle of the drop reduces to the receding angle of the defect. The magnitude of sliding angle grows approximately linearly with the pinning length, which is the contact line length on the defect and perpendicular to the sliding direction.
1. 葉銘智,“分子構型對濕透行為之影響研究”,國立台灣大學化學工程研究所博士論文(2003.6)
2. J.S.Rowlinson and B.Widom, “Molecular Theory of
Capillarity”,Oxford Science Publications,66,816(1982)
3. R.N.Wenzel, “Resistance of solid surfaces to wetting by water”, Ind.Eng.Chem,28,988-994(1936)
4. A.B.D.Cassie and S.Baxter, “Wettability of porous surface”, Trans.Faraday Soc, 40,546-551 (1944)
5. C.W. Etrand; Y.Kumagai “Liquid Drops on an Inclined Plane: The Relation Between Contact Angles, Drop Shape, and Retentive Force”, Colloid Interface Sci.,170,515-521(1995)
6. R.Brown; F.Orr, “Static Drop on an Inclined Plate: Analysis by the Finite Element Method”, J. Colloid Interface Sci., 73, 76.87,(1980)
7. G.Macdougall; C.Ockrent, “Surface Energy Relations in Liquid Solid Systems. I. The Adhesion of Liquids to Solids and a New Method of Determining the Surface Tension of Liquids.”, Proc. R. Soc .London, Ser. A, 180, 151.173,(1942)
98
8. M.Masashi, N.Akira et al., “ Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces”, Langmuir, 16,5754-5760,(2000)
9. C.Neinhuis, W.Barthlott, “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces”, Annals of Botany,79,667-677,(1997) 10. W.Barthlott,R.Furstner“Wetting and Self-Cleaning Properties of Superhydrophobic Surfaces”Langmuir,21,956-961(2005) 11. L.Feng and L.Jiang,“Petal Effect: A Superhydrophobic State with High Adhesive Force ”Langmuir,24,4114-4119(2008) 12. F.M.Chang,S.J.Hong,Y.J.Sheng and H.K.Tsao, “High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defect” Appl.Phys.Lett.,95,064102(2009)
13. G.Lichao and J.McCarthy, “Contact Angle Hysteresis Explained”,Langmuir,22,6234-6237,(2006) 14. J.F.Joanny and P.G. de Gennes, “Wetting: statics and dynamics”, J.Chem.Phys.,81 ,552(1984) 15. S.J.Hong,F.M.Chang,T.H.Chou ,S.H.Chan,Y.J.Sheng , and H.K.Tsao, “Anomalous Contact Angle Hysteresis of a Captive
99
Bubble:Advancing Contact Line Pinning”, Langmuir, ,27(11),6890-6896 (2011)
16. J.A.Marsh and A.M Cazabat, “ Dynamics of Contact Line Depinning form a Single Defect”,Physical review letters,71,2433-2436 (1993)
17. G.D.Nadkarni and S.Garoff, “ An Investigation of Microscopic Aspects of Contact Angle Hysteresis: Pinning of the Contact Line on a Single Defect.”,Europhys.Lett,20,523-528 (1992)
18. P.Craig et al., “Asymmetric Wetting Hysteresis on Hydrophobic Microstructured Surfaces”, Langmuir,25(10),5655-5660,(2009)
19. M.Reyssat and D.Quere, “Contact Angle Hysteresis Generated by Strong Dilute Defects”,J. Phys Chem,113,3906-3909,(2009)
20. V.de.Jonghe and D.Chatain, “ Experimental Study of Wetting Hysteresis on Surfaces with Controlled Geometrical and/or Chemical Defects”, Acta metall. Meater,42,4,1505-1515,(1995)
21. L.Wang, J. Wei and Z. Su, “ Fabrication of Surfaces with Extremely High Contact Angle Hysteresis from Polyelectrolyte Multilayer”Langmuir,27,15299-15304,(2011)
100
22. A. Paterson, M. Fermigier,et al. “ Wetting on heterogeneous surfaces: Experiments in an imperfect Heie-Shaw cell”,Physical review E,51,1291-1298,(1995)
23. A.R.Parker and C.R.Lawrence, “Water Capture by a Desert Beetle”,Nature,414,33-34,(2001)
24. R.P.Garrod et al., “Mimicking a Stenocara Beetle’s Back for Microcondensation Using Plasmachemical Patterned Superhydrophobic-Superhydrophilic Surfaces” Langmuir,23,689-693,(2007)
25. Q.Ke, S.Zhang et al., “ Intrinsic dew-enhancing ability of SiO2/PODS materials”,Colloid and Surface A, 337,110-114,(2011)
26. S.J.Pastine, D. Okawa, “ A Facile and Patternable Method for the Surface Modification of Carbon Nanotube Forests Using Perfluoroarylazides”,J.Am.Chem.Soc,130,4238-4239,(2008)
27. C.Dorrer and J.Ruhe, “Mimicking the Stenocara BeetlesDewetting of Drops from a Patterned Superhydrophobic Surface”Langmuir,24,6154-6158,(2008)
28. 李坤穆,“溶膠-凝膠法製備超疏水性薄膜材料",國立中央大學碩
101
士論文,(2004.06)
29. H.Tavana, D.Jehnichen et al., “ Contact angle hysteresis on fluoropolymer surfaces”, Advances in Colloid and Interface Science,134-135,236-248,(2007)
30. B.He, J.Lee et al., “ Contact angle hysteresis on rough hydrophobic surfaces”, Colloids and Surfaces A, 248,101-104,(2004)
31. C.W.Extrand, “Contact Angles and Hysteresis on Surfaces with Chemically Heterogeneous Islands”, Langmuir,19,3793-3796,(2003)
32. S.R.Annapragada, J.Y. Murthy et al., “Droplet Retention on an Incline”, International Journal of Heat and Mass Transfer,55,1457-1465,(2011)
33. N.Ananrtharaju, M.Panchagnula et al., “Evaporating drops on patterned surfaces: Transition from pinned to moving triple line”, Journal of Colloid and Interface Science,337,176-182,(2009)
34. M.E.Diaz, J.Fuentes et al., “Hysteresis During Contact Angles Measurement”, Journal of Colloid and Interface
102
Science,343,574-583,(2010)
35. E.L.Decker, B. Frank et al., “Physics of Contact Angle Measurement”, Colloids and Surfaces A,156,177-189,(1999)
36. R.E.Johson and R.H.Dettre, “Contact Angle ,Wettability and Adhesion in Chemistry Series”,American chemical society 43,112 and 136(1964) 37. E. Rame, “The Interpretation of Dynamic Contact Angles Measured by the Wilhelmy Plate Method”,Journal of Colloid and Interface Science,185,245-251(1997) 38. 曾祥慶,“超疏水表面利用壓版法量測接觸角的遲滯現象與超疏水表面因缺陷存在造成水珠停滯不前的現象”,國立中央大學碩士論文,(2011.06) 39. X.Li,Z.Cao,F.Liu,Z.Zhang and H.Dang “A Novel Method of Preparation of Superhydrophobic Nanosilica in Aqueous Solution”Chemistry Letters.35,94(2006) 40. M.Reyssat and D.Quere ., “Contact Angle Hysteresis Generated by Strong Dilute Defects”J.Phys.Chem.B,113,3906-3909(2009)
103
41. T-H Chou, S-J Hong et al., “Drops Sitting on a Tilted Plate :Receding and Advancing Pinning”, Langmuir,28(11),5158-5166,(2012)