| 研究生: |
樂明 Ming Le |
|---|---|
| 論文名稱: |
高光譜成像應用於屏幕複合式量測系統之研究 The Study of Hyperspectral Imaging for Screen Imaging Synthesis System |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 高光譜成像 、BSDF 、配光曲線 、屏幕複合式成像系統 |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同於市售儀器量測耗時,超快速光分佈量測儀利用屏幕複合式成像系統一次擷取大範圍光強分佈,並結合待測物旋轉系統以拍攝不同角度之光強分佈,最後透過本團隊所開發之影像融合系統,可快速取得待測光源之配光曲線。
為了對光源進行色彩分佈分析,在基於此儀器之架構下,本論文提出了空間多工之新型屏幕設計,並在相機鏡頭前裝上特殊穿透式光柵,以實現高光譜成像之功能。本論文對高光譜成像量測系統提出了一套影像融合演算法,並針對系統之波長定位、均勻度校正及頻率響應校正皆提出了解決方案。在未來,本儀器僅需透過更換屏幕,與光柵的使用與否,即可在短時間內同時量測光源之強度與色彩分佈。
In contrast to commercialized machine that have time-wasting measurement issue, Ultrafast Optical Goniometer (UOG) utilizes Screen Imaging Synthesis (SIS) system to acquire a wide range of optical distribution in one-shot. Combining Object under Test (OUT) system, the SIS system can capture different angle of light distribution. Finally, by using the imaging fusion algorithm developed by our team, light distribution curve can be acquired in short period of time.
In order to analyze color distribution of a light source, this thesis proposes a new screen design with spatial multiplexing, and arranges a special transmitting grating in front of the lens to achieve the Hyperspectral Imaging (HSI) measurement. This thesis proposes an imaging fusion algorithm for HIS measurement, and offers a solution for wavelength calibration, uniformity correction and frequency response correction. In the future, UOG can rapidly measure the intensity and color distribution of a light source, through the screen changing and the using of grating.
1. J. A. Jacquez, and H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460-470 (1955).
2. J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, and M. J. Van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399-410 (1993).
3. R. Yeo, R. Rykowski, D. Kreysar, and K. Chittim, "The imaging sphere—the first appearance meter?," Proc. The 5th Oxford Conference on Spectroscopy, 87-103 (2006)
4. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for led lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
5. C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white leds,” Opt. Express 16, 20060-20066 (2008).
6. M. Lindemann, R. Maass, and G. Sauter, “A brief history of traceable goniophotometry at ptb,” Light Eng. 20 (2012).
7. J. M. Slater, “A recording goniophotometer,” J. Opt. Soc. Am. 25, 218-223 (1935).
8. P. Moon, and J. Laurence, “Construction and test of a goniophotometer,” J. Opt. Soc. Am. 31, 130-139 (1941).
9. P. Marx, “New goniophotometers for lighting-engineering laboratories,” Light Eng. 5, 32-36 (1997).
10. G. Sauter, “Goniophotometry: New calibration method and instrument design,” Metrologia 32, 685 (1995).
11. G. Sauter, "Review on new developments in photometry," (2005)
12. M. Lindemann, R. Maass, and G. Sauter, “Robot goniophotometry at ptb,” Metrologia 52, 167 (2015).
13. Energy Star, "Program requirements for solid state lighting luminaires," in Eligibility Criteria–Version(2008).
14. Energy Star, and Eeergy Star®, "Program requirements for residential," (2010).
15. Energy Star, “About energy star,” (U.S. Environmental Protection Agency and U.S. Department of Energy). https://www.energystar.gov/about.
16. S. Chevrel, O. F. BRGM, V. Kuosmannen, E. F. GTK, R. Belocky, W. A. GBA, H. Mollat, H. G. BGR, L. Quental, and L. P. IGM, “Hyperspectral airborne imagery for mapping mining-related contaminated areas in various european environments–first results of the mineo project,” Fifth International Airborne Remote Sensing Conference, San Francisco, California 17, 20 (2001)
17. C. Fischer, and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications,” Stud. Conserv. 51, 3-16 (2006).
18. C. I. Chang, Hyperspectral imaging: Techniques for spectral detection and classification (Springer Science & Business Media, 2003).
19. G. Lu, and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed. Opt. 19, 010901-010901 (2014).
20. J. C. Harsanyi, and C.-I. Chang, “Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach,” IEEE Trans. Geosci. Remote Sens. 32, 779-785 (1994).
21. D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process. Mag. 19, 17-28 (2002).
22. D. Manolakis, and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19, 29-43 (2002).
23. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12, 014036-014036-7 (2007).
24. N. Hagen, R. T. Kester, L. Gao, and T. S. Tkaczyk, “Snapshot advantage: A review of the light collection improvement for parallel high-dimensional measurement systems,” Opt. Eng. 51, 111702-1-111702-7 (2012).
25. S. Grusche, “Basic slit spectroscope reveals three-dimensional scenes through diagonal slices of hyperspectral cubes,” Appl. Opt. 53, 4594-4603 (2014).
26. F. Lacar, M. Lewis, and I. Grierson, "Use of hyperspectral imagery for mapping grape varieties in the barossa valley, south australia," Proc. IEEE Geoscience and Remote Sensing Symposium 6, 2875-2877 (2001)
27. S. Bajwa, P. Bajcsy, P. Groves, and L. Tian, “Hyperspectral image data mining for band selection in agricultural applications,” T. ASAE 47, 895 (2004).
28. E. K. Hege, D. O'Connell, W. Johnson, S. Basty, and E. L. Dereniak, "Hyperspectral imaging for astronomy and space surviellance," Proc. SPIE's 48th Annual Meeting Optical Science and Technology, 380-391 (2004)
29. H. Grahn, and P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons, 2007).
30. M. F. Noomen, Hyperspectral reflectance of vegetation affected by underground hydrocarbon gas seepage (2007).
31. D. P. Ariana, and R. Lu, “Detection of internal defect in pickling cucumbers using hyperspectral transmittance imaging,” T. ASABE 51, 705-713 (2008).
32. D.-W. Sun, Hyperspectral imaging for food quality analysis and control (Elsevier, 2010).
33. V. N. Mahajan, Optical imaging and aberrations: Ray geometrical optics (SPIE press, 1998).
34. J. M. Palmer, and B. G. Grant, The art of radiometry (SPIE Press Bellingham, WA, USA, 2010).
35. D. W. Wilson, P. D. Maker, R. E. Muller, P. Mouroulis, and J. Backlund, "Recent advances in blazed grating fabrication by electron-beam lithography," Proc. SPIE Int. Society for Optics and Photonics (2003)
36. C. Palmer, and E. G. Loewen, Diffraction grating handbook (Newport Corporation New York, 2005).
37. E. Hecht, Hecht optics (1998).
38. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. Budde, H. Condit, S. Henderson, and J. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1040 (1964).
39. G. Wyszecki, and W. S. Stiles, Color science (Wiley New York, 1982).
40. CIE, “Selected colorimetric tables,” (Commission Internationale de l'Eclairage). http://www.cie.co.at/index.php/LEFTMENUE/index.php?i_ca_id=298.
41. H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the cie 1931 color-matching functions were derived from wright-guild data,” Color Res. Appl. 22, 11-23 (1997).
42. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142-144 (1992).
43. Y. W. Yu, Y. L. Chen, W. H. Chen, H. X. Chen, X. H. Lee, C. C. Lin, and C. C. Sun, “Bidirectional scattering distribution function by screen imaging synthesis,” Opt. Express 20, 1268-1280 (2012).
44. J. C. Stover, Optical scattering: Measurement and analysis (SPIE optical engineering press Bellingham, 1995).
45. G. Ward, R. Mistrick, E. S. Lee, A. McNeil, and J. Jonsson, "Simulating the daylight performance of complex fenestration systems using bidirectional scattering distribution functions within radiance," Proc. Annual Conference of the Illuminating Engineering Society 7, 241-261 (2011)
46. 陳彥霖,新型散射元件全場域光場量測之研究,國立中央大學光電所碩士論文,民國一百年
47. 林芸萱,二維影像融合用於 BSDF 與配光曲線之研究,國立中央大學光電所碩士論文,民國一百零五年
48. J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005).
49. C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field region of leds,” Opt. Express 17, 13918-13927 (2009).
50. T. Kuno, H. Sugiura, and N. Matoba, “A new automatic exposure system for digital still cameras,” IEEE Trans. Consum. Electron. 44, 192-199 (1998).
51. 陳宇廷,自動曝光與自動白平衡,國立臺灣大學資工所碩士論文,民國九十九年
52. E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik, G. Ward, and K. Myszkowski, High dynamic range imaging: Acquisition, display, and image-based lighting (Morgan Kaufmann, 2010).
53. S. K. Nayar, and T. Mitsunaga, "High dynamic range imaging: Spatially varying pixel exposures," Proc. IEEE Conference on Computer Vision and Pattern Recognition 1, 472-479 (2000)
54. D. R. White, P. Saunders, S. J. Bonsey, J. van de Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Optq. 37, 3450-3454 (1998).
55. P. Oelhafen, and J. Freeouf, “Accurate spectrometer calibration in electron spectroscopy,” J. Vac. Sci. Technol. A 1, 96-97 (1983).
56. M. Kosch, S. Mäkinen, F. Sigernes, and O. Harang, "Absolute optical calibration using a simple tungsten light bulb: Experiment," Proc. The 30th Annual European Meeting on Atmospheric Studies 50-54 (2003)
57. J. Thomson, “Determining the system function,” (Jonathan Thomson’s web journal). https://jethomson.wordpress.com/spectrometer-articles/system-unction/
58. C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-color-temperature distribution of white leds from 2800k to 6500k,” Opt. Express 20, 6622-6630 (2012).
59. Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular cct uniformity of phosphor converted white leds: Effects of phosphor materials and packaging structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
60. 邱志煜,白光 LED 空間色偏分佈之研究,國立中央大學光電所碩士論文,民國一百零一年