跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡宗廷
Zong-Ting Cai
論文名稱: MODIS衛星資料在亞洲地區氣膠種類辨識之應用
Discrimination of Aerosol Types with MODIS Data in Asia.
指導教授: 林唐煌
Tang-Huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 火山灰MODIS煙塵沙塵氣膠
外文關鍵詞: MODIS, volcanic ash, smoke, dust, aerosol
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用MODIS Aqua / Terra 在2002年至2008年發生在亞洲地區的生質燃燒、沙塵暴事件以及冰島火山爆發事件之觀測資料,分析各類氣膠在可見光及紅外頻道之輻射特性,並歸納出各類氣膠之光學特性,以建立辨識氣膠種類之方法。
    由MODIS 36個頻道輻射特性之分析結果得到可利用第2(850nm)、3(469nm)、8(413nm)、9(443nm)與17(905nm)頻道區分煙塵與晴空地表之不同,利用第25(4.52μm)及26(1.38μm)頻道區分沙塵和火山灰與晴空地和煙塵,以及利用第17與第18(936nm)頻道區分沙塵與火山灰。在紅外頻道方面,沙塵和火山灰之11μm與12μm亮度溫度差(BTDI)明顯低於煙塵,沙塵(-1.729±1.001)及火山灰(-2.395±0.646)皆為負值,而煙塵(3.408±0.141)則為正值,因此可就BTDI值區分煙塵與另外兩者。此外本研究亦發現衛星觀測之BTDI值與氣膠(沙塵和火山灰)濃度及環境水氣含量有關,因此可利用衛星所觀測到之BTDI值以及環境水氣含量,估算沙塵與火山灰在像元裡之比例。本研究依照各類氣膠在MODIS三十六頻道之特性、BTDI值及氣膠在像元裡之比例,建立一套辨識煙塵、沙塵以及火山灰之方法,並應用於亞洲地區不同的氣膠種類之辨識,獲得不錯之結果。


    The main aim of study is to identify aerosol types based on the spectral radiance observed by Moderate Resolution Imaging Spectroradiometer (MODIS). Three datasets are collected for the discrimination of aerosol types, including volcanic ash, smoke plumes and mineral dust, during the periods of Icelandic volcano eruption, Southeast Asian biomass burning and Asian dust storm events.
    According to the analysis of thermal radiation (brightness temperature), the BTDI (Brightness Temperature Difference Index) in split window of smoke plumes (3.408±0.141) are larger than both volcanic ashes (-2.395±0.646) and dust particles (-1.729±1.001), suggesting that the BTDI can be an optimal indicator for the discrimination of smoke from volcanic ash and dust particles. For the radiometric characteristics in visible and near infrared spectral band, smoke plumes and clean land surface have a distinct difference in reflectivity in MODIS band 2 (850nm), band 3 (469nm), dand 8 (413nm), band 9 (443nm) and band 17 (905nm). Therefor, these bands can be an optimal indicator for the discrimination between smoke plumes and land surface. Dust particles and volcanic ashes have a distinct difference in reflectivity between band 17 ( 905nm ) and band18 ( 936nm ) of MODIS and the difference between these two bands can be an optimal indicator for the discrimination between volcanic ash and dust particles.
    On the other hand, the BTDI observed by satellite is composed of contribution by aerosol (dust and ash) and water vapor in the environment if a pixel cell is not full filled with aerosol particles. Therefor, we can derive the fractions of BTDI contributed by aerosols and water vapor. As a result, an ensemble method for diseriminating the aerosol type has been integtated in this study.

    摘要 I 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 1.1研究動機 1 1.2研究目的 4 第二章 大氣氣膠與文獻回顧 5 2.1大氣氣膠 5 2.2沙塵 8 2.3煙塵 10 2.4火山灰 11 2.5氣膠種類辨識 13 第三章 理論基礎與研究方法 16 3.1 參數介紹 16 3.1.1亮度溫度 16 3.1.2氣膠光學厚度 17 3.1.3氣膠粒徑分佈參數 19 3.2 研究資料簡介 20 3.2.1 MODIS 衛星資料 20 3.2.2 CALIPSO 衛星資料 24 3.3 研究方法 25 3.3.1蒐集資料 26 3.3.2樣本選取 26 3.3.3氣膠特性之建立 29 3.3.4影響BTDI之因素 30 3.3.5結果之驗證 32 第四章結果與討論 34 4.1 氣膠輻射特性分析 34 4.1.1 煙塵 34 4.1.2 沙塵 38 4.1.3 火山灰 42 4.1.4 綜合分析 47 4.2 氣膠BTDI特性分析 54 4.2.1 BTDI 54 4.2.2影響BTDI之因素 57 4.3氣膠種類辨識方法 72 4.3.1方法一 72 4.3.2方法二(沙塵、火山灰) 75 4.3.1方法三(沙塵、火山灰) 75 4.4 結果與驗證 76 4.4.1煙塵 76 4.4.2沙塵 88 4.4.3火山灰 101 4.4.4應用 124 第五章 結論與未來展望 127 5.1結論 127 5.2未來展望 130 參考文獻 131 附錄 135

    宋敏紅,錢正安,蔡英,柳中明,2005。中蒙地區強、弱沙塵暴年環流及沙塵暴變化原因的分析,海峽兩岸沙塵暴與環境治理學術研討會論文。
    李崇德,宋鎮宇,王俊凱,張士昱,王證權,2001。沙塵暴期間台北地區氣膠散光係數和物理化學特性,大陸沙塵暴對台灣地區空氣品質影響與預測研討會論文。
    林唐煌,劉振榮,陳哲俊,1998。應用SPOT衛星資料求取大氣氣溶膠光學厚度,航測及遙測學刊,第三卷第四期,1-14頁。
    林能暉,彭啟明,吳承翰,2001。大陸沙塵暴之長程傳送:模式模擬與個案探討,環保署大陸沙塵暴研討會。
    徐睿鴻,2007。鹿林山與中壢氣膠光學垂直特性之監測與比較,國立中央大學大氣物理研究所碩士論文,中壢。
    黃希爾,2004。東亞生質燃燒對台灣高山氣膠特性的影響,國立中央大學環境工 程研究所碩士論文,中壢。
    蔡顓宜,2010。結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用,國立中央大學太空科學研究所碩士論文,中壢。

    Ackerman S. A., 1989. Using the Radiative Temperature Difference at 3.7 and 11 μm to Track Dust Outbreaks. Remote Sensing of Environment, 27,129-133.
    Ackerman S. A., 1997. Remote sensing aerosols using satellite infrared observations. Journal of Geophysical Research, 102 (17), 69-79.
    Ansmann, A., R. Engelmann, D. Althausen, U. Wandinger, M. Hu, Y. Zhang, and Q. He, 2005.High aerosol load over the Pearl River Delta, China, observed with Raman lidar and Sun photometer, Geophysical Research Letters, 32, L13815, [DOI:10.1029/2005GL023094].
    Corradini, S., C. Spinetti, E. Carboni, C. Tirelli, M. F. Buongiorno, S. Pugnaghi, and G. Gangale , 2008. Mt. Etna tropospheric ash retrieval and sensitivity analysis using Moderate Resolution Imaging Spectroradiometer measurements. Journal of Applied Remote Sensing, 2, 023550, [DOI: 10.1117/1.3046674].
    Gao, S., Y. Deng, H. Yu, X. He, K. Beznosov, and K. Cooper, 2004. Applying aspect-orientation in designing security systems: A case study. in: Proceedings of the International Conference on Software Engineering and Knowledge Engineering, Canada, 360–365.
    Huang, J.P., J.M. Ge, and F.H. Weng, 2007. Detection of Asia dust storms using multisensor satellite measurements. Remote Sensing of Environment ,110, 186-191.
    Kurosaki, Y., and M. Mikami, 2003. Recent frequent dust events and their relation to surface wind in East Asia. Geophysical Research Letters, 30(14), 1736, [DOI: 10.1029/2003GL017261].
    Lin , T.H., G.R. Liu, and Y.C. Chen, 2010. Remote sensing of smoke plumes with moderate resolution imaging spectroradiometer reflectance measurements. Journal of Applied Remote Sensing, 4, 041876, [DOI: 10.1117/1.3505481]
    Menon S., J. Hansen, L. Nazarenko, and Y. Luo, 2002. Climate effects of black carbon aerosols in China and India. Science, 297, 2250-2253.
    Mochida, M., and K. Kawamura, 2004. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles, Journal of Geophysical Research, 109, D21202, [DOI:10.1029/2004JD004962].
    Novakov, T. and C.E. Corrigan, 1996. Cloud condensation nucleus activity of the organic component of biomass smoke particles, Geophysical Research Letters, 23, 2141-2144.
    Ogunjobi, K.O., Z. He, K.W. Kim, and Y.J. Kim, 2004. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea, Atmospheric Environment, 38, 1313-1323.
    Perez C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbosch, and V. E. Cachorro5, 2006. A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, Journal of Geophysical Research, 111, D15214, [DOI:10.1029/2005JD006579].
    Prata, A. J., 1989. Observation of volcanic ash clouds using AVHRR-2 radiances. International Journal of Remote Sensing, 10 (4-5), 751-761 [DOI:10.1080/01431168908903916].
    Prata, A. J., 1989. Radiative transfer calculations for volcanic ash clouds. Geophysical Research Letters, 16(11), 1293-1296 [DOI:10.1029/GL016i011p01293].
    Qiu, J., and Y. Liquan, 2000. Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980-1994, Atmospheric Environment, 34, 603-609.
    Qu, J.J., X.J. Hao, M. Kafatos, and L.L. Wang, 2006. Asian Dust Storm Monitoring Combining Terra and Aqua MODIS SRB Measurements. IEEE Geoscience and Remote Sensing Letters, 3(4), 484-486.
    Wang, S.H., Lin, N. H., Chou, M. D., Woo, J. H., 2007. Estimate of radiative forcing of Asian biomass-burning aerosols during the period of TRACE-P. J.Geophys.Res., 112, No. D10, D1022210 .1029/2006JD007564.
    Wen, S., and W.I. Rose, 1994. Retrieval of sizes and total masses of particles in volcanicclouds using AVHRR bands 4 and 5. Journal of Geophysical Research, 99(D3), 5421-5431, [DOI:10.1029/93JD03340].
    Xuan, J., G.L. Liu, and K. Du, 2000. Dust emission inventory in Northern China, Atmospheric Environment, 34, 4565–4570.
    Zhang, X. Y., G. Y. Zhang, G. H. Zhu, D. E. Zhang, Z.S. An, T. Chen, and X.P. Huang, 1996. Elemental tracers for Chinese source dust. Science China, 26, 512–521.
    Zhang, P., N.M. Lu, X.Q. Hu, and C.H. Dong, 2006. Identification and physical retrieval of dust storm using three MODIS thermal IR channels. Global and Planetary Change, 52, 197-206.

    QR CODE
    :::