| 研究生: |
冉為誠 Wei-chen Ran |
|---|---|
| 論文名稱: |
矽基板貫孔的製作和量測 Fabrication and Measurement of Through Substrate Vias on Silicon |
| 指導教授: |
傅家相
Jia-shiang Fu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 矽基板貫孔 |
| 外文關鍵詞: | Through substrate via |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基板貫孔近年來受到不少關注。在封裝技術的應用方面,可以透過基板貫孔的方式使晶片垂直連接,使總體的晶片面積縮小。在微波電路方面,基板貫孔可用於實現基於微帶線結構的電路,而不會僅限於單一平面的傳輸線結構(如共平面波導與槽線),使電路設計更自由且具彈性。
本論文主要著重於矽基板貫孔的製程發展。我們探討不同的矽蝕刻製程的優劣,最後選擇以反應離子蝕刻(reactive ion etching, RIE)機台搭配負光阻KMPR 1025來進行矽基板貫孔的製作,並以金電鍍的方式將連接基板兩面的金屬鍍厚。我們於厚度為150 μm的高電阻率矽基板上製作出的最小貫孔直徑為30 μm;量測結果顯示,在2.4 GHz的貫孔電感感值可低於100 pH,而貫孔電阻則可小於0.5 Ω。我們根據文獻中圓柱型貫孔的電感公式計算理論值,與量測得的電感值比較,發現量測值皆在理論值預估的範圍內。
我們成功地發展出矽基板貫孔的製程,製作出具低電感值及低電阻值的基板貫孔;此製程未來將可用於基於微帶線結構的微波電路的製作。
Through substrate via (TSV) has been receiving much attention in recent years. As a packaging technology, TSVs can be used for connecting chips vertically, reducing the footprint of the overall system. For microwave circuits, TSVs are used for realizing microstrip-based circuits. Without TSVs, the design would be limited to uniplanar structures, such as coplanar waveguides and slot lines. Therefore, TSV provides more design freedom and flexibility to the circuit designers.
This work focuses on the development of the fabrication process for TSVs on silicon. Different techniques for silicon etching are investigated and compared. Finally, reactive ion etching (RIE) with negative photoresist KMPR 1025 is chosen for the fabrication of TSVs on silicon and the metal that connects the top and bottom side of the substrate is thickened by gold electroplating. The minimum diameter of the TSV we fabricate on a 150-μm-thick high-resistivity silicon substrate is 30 μm. Measurement results show that, at 2.4 GHz, the inductance and resistance of the TSVs are less than 100 pH and 0.5 Ω, respectively. Based on the formula provided in the literature, we calculate the theoretical values of the inductances of vias with various diameters. Our measured inductance values fall within the range predicted by the theory.
In conclusion, a fabrication process for TSVs on silicon is developed. TSVs with low inductance and low resistance are fabricated. The developed process is suitable for realizing microwave circuits based on microstrip structure.
[1] J. G. Hartnett, M. E. Tobar, E. N. Ivanov, and J. Krupka “Room temperature measurement of the anisotropic loss tangent of sapphire using the whispering gallery mode technique,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control., vol. 53, no. 1, pp. 34–38, Jan. 2006.
[2] L. Lin, T.-C. Yeh, J.-Lin Wu, G. Lu, T.-F. Tsai, L. Chen, and A.-T. Xu, “Reliability characterization of chip-on-wafer-on-substrate (CoWoS) 3D IC integration technology,” Proc. IEEE Electron. Compon. and Tech., pp. 366–371, May. 2013.
[3] W. Woods, G. Wang, and H. Ding, “Microwave compact passive circuit model of isolated interconnect over a silicon substrate with a through-silicon via (TSV) ground supply network,” European Microw. Integrated Circuits Conference., pp. 342–345, Oct. 2008.
[4] Y. P. R. Lamy, K. B. J. F. Roozeboom, D. J. Gravesteijn, and W. F. A. Besling, “RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration” IEEE Trans. Aadvanced Packing., vol. 33, no. 4, pp. 1072–1079, Nov. 2010.
[5] S. Spiesshoefer, L. Schaper, S. Burkett, and G.Vangara, “Z-axis interconnects using fine pitch, nanoscale through-silicon vias: process development” Proc. IEEE Electron. Compon. and Tech., vol. 1, pp. 466–471, Jun. 2014.
[6] J. V. Olmen et al., "3D stacked IC demonstration using a through silicon via first approach", Technical Digest of the International Electron Device Meeting., pp. 1–4, Dec. 2008.
[7] Z. Xu, and J.-Q. Lu, “Through-silicon-via fabrication technologies, passives extraction, and electrical modeling for 3-D integration/packaging,” IEEE Trans. Semiconductor Manufacturing., vol. 26, no. 1, pp. 23–24, Feb. 2013
[8] E.-H. Chen et al., "Fine-pitch backside via-last TSV process with optimization on temporary glue and bonding conditions" Proc. IEEE Electron. Compon. and Tech., pp. 1811–1814, May. 2013
[9] H. V. Jansen, J. G. E. Gardeniers, M. J. de Boer, M. C. Elwenspoek, and J. H. J. Fluitman, “A survey on the reactive ion etching of silicon,” J. Micromech. Microeng., vol. 6, pp. 14–28, Dec. 1996.
[10] B. Wu, A. Kumar, and S. Pamarthy, “High aspect ratio silicon etch: A review,” J. Appl. Phys., vol. 108, no. 5, pp. 51101–51121, Jul. 2010.
[11] F. S.-S. Chien, C.-L. Wu, Y.-C. Chou, T. T. Chen, S. Gwob, and W.-F. Hsieh, "Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching", Appl. Phys. Lett., vol. 75, no. 16, pp. 2429–2431, Aug. 1999
[12] A. R. Djordjevic, T. K. Sarkar, and S. M. Rao, “Analysis of finite conductivity cylindrical conductors excited by axially independent TM electromagnetic field,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 10, pp. 960–966, Oct. 1985.
[13] G. I. Costache, M.W. Nemes, and E. M. Petriu, “Finite element method analysis of the influence of the skin effect, proximity, and eddy currents on the internal magnetic field and impedance of a cylindrical conductor of arbitrary cross section,” in Proc. Can. Electrical and Computer Engineering Conf., pp. 253–256, Sep. 1995.
[14] L. L. W. Leung, and K. J. Chen, “Microwave characterization and modeling of high aspect ratio through-wafer interconnect vias in silicon substrates,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2472–2480, Aug. 2005.
[15] M. E. Goldfarb and R. A. Pucel, “Modeling via hole grounds in microstrip,” IEEE Microw. Guided Wave Lett., vol. 1, no. 6, pp. 135–137, Jun. 1991.