跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王得安
De-An Wang
論文名稱: 撓性結構之主動振動控制
Active Vibration Control of Flexible Structures
指導教授: 黃以玫
Yii-Mei Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 140
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在撓性結構之研究與設計中,結構振動為一重要的研究主題。本
    論文將探討受外力激振之撓性結構的主動振動控制,控制目標為全域
    降低結構振動。在本文中將以獨立模態控制法為架構,利用離散式感
    測器與制動器進行控制。在模態控制法中,需要知道各個模態的模態
    座標及模態速度,以便進行控制法則的設計與控制系統的實現。在此
    將利用模態濾波的技術求得相關的模態座標及模態速度。由於有外擾
    的存在,若只採用狀態回授控制,則無法有效抑制結構振動。本文將
    引入模態空間外力抵消的概念,以降低外擾的影響。為了能實現模態
    空間外力相消,本研究將使用三種不同的模態外力估測器,並發展三
    種不同的控制方法來實現主動式振動控制。第一種方法採用模態空間
    前饋及回饋控制抑制結構振動。在此方法中,外力估測器是利用逆動
    態技術來設計。控制法則則是用擴增型最佳控制理論求得,此理論乃
    是將外擾當成一個增生的狀態變數進行求解。第二種方法是採用Hoo
    控制技術來設計控制系統。在此,利用模型誤差補償器當成模態外力
    估測器,估測未知、任意的外擾,以達成模態外力抵消的構想。但在
    外力相消之後,仍有些許的殘留外力存在,因此設計了Hoo控制器,
    以確保外力壓抑的效果。最後,一個新的數位式變結構控制方法將應用於撓性結構主動振動控制。變結構控制對外擾和系統參數誤差具有
    強健性。此數位式變結構控制器內含一個外力估測器,可以估測未知
    的外擾。如此便不需要外擾上界以設計變結構控制器,大大提高了變
    結構控制的實用性。本論文將著重於外力估測器性能的探討以及三種
    控制方法對結構振動改善的情形。


    Mechanical vibration is an important topic in the study and design of
    exible structures.
    This dissertation studies the active vibration control of a
    exible structure
    subjected to arbitrary, unmeasurable disturbance forces. The control objective is to
    reduce the structure vibration globally. The concept of independent modal space
    control is adopted. Here, discrete sensors and actuators are used. The modal lters
    are chosen as the state estimator to obtain the modal coordinates and modal velocities
    for the modal space control. Because of the existence of the disturbance forces,
    the vibration control only with the state feedback control law can not suppress the
    vibration well. The method of disturbance forces cancellation is then added in the
    control loop. In order to implement the disturbance forces cancellation, the unknown
    disturbance modal forces must be observed. Three di erent kinds of control
    algorithms are developed, in the dissertation, for the active vibration control. All
    of them involve the suitable disturbance force observers to observe the disturbance
    modal forces. The observed disturbance modal forces then are included in the control
    loops to cancel out the undesired excitation. The rst method employs the modal
    space feedforward and feedback control loops to suppress the structure vibration. A
    disturbance force observer, based on the inverse dynamics technique, is established.
    The control gains are derived from the extended optimal control algorithm, where
    the disturbance modal forces are treated as exogenous state variables. Second, the
    author applies the H1 control to the structure vibration attenuation. The model
    error compensator is employed to observe the unknown disturbance modal forces forthe direct cancellation. After the implementation of the disturbance modal forces
    cancellation, there are still some residual disturbance modal forces which excite the
    structure. The disturbance attenuation problem is concerned in the design of the
    state feedback control law. For ensuring the in
    uence of the residual disturbance
    modal forces is reduced to an acceptable level, the robust static H1 state feedback
    controller is designed here. In the last, the author studies the application of using
    the discrete-time variable structure control method to reduce the vibration of the
    exible structure. A discrete-time variable structure controller with a disturbance
    force observer is adopted here due to its distinguished robustness property of insensitiveness
    to parameters uncertainties and external disturbances. The included
    disturbance force observer can observe the unknown disturbance modal forces, which
    are used in the discrete-time variable structure control law to cancel out the excitations.
    The upperbound limitations of the unknown disturbances in the variable
    structure control, therefore, are no longer needed. The performances of estimating
    the disturbance modal forces and the vibration reduction of the
    exible structure of
    the three control laws are discussed.

    Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction 1 1.1 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Equation of Motion of the Flexible Structure 10 2.1 Boundary-Value Problem of a Beam . . . . . . . . . . . . . . . . . . . 10 2.2 The Eigenvalue Problem of a Cantilever Beam . . . . . . . . . . . . . 14 2.3 Response of the Beam . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Dimensionless System Description . . . . . . . . . . . . . . . . . . . . 17 3 Independent Modal Space Control 20 3.1 Independent Modal Space Control . . . . . . . . . . . . . . . . . . . . 21 3.2 Point Actuators Forces . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Modal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Observation Spillover and Control Spillover . . . . . . . . . . . . . . . 25 3.5 Dimensionless System Description . . . . . . . . . . . . . . . . . . . . 26 3.5.1 Continuous-Time System . . . . . . . . . . . . . . . . . . . . . 26 3.5.2 Discrete-Time System . . . . . . . . . . . . . . . . . . . . . . 28 4 Control Law Design 30 4.1 Nearly Optimal Control Law with a Disturbance Force Observer . . . 30 4.1.1 Disturbance Force Observer . . . . . . . . . . . . . . . . . . . 31 4.1.2 Nearly Optimal Control Law Design . . . . . . . . . . . . . . 33 4.2 H1-Based Control Law with a Model Error Compensator . . . . . . . 37 4.2.1 H1 Control Law Design . . . . . . . . . . . . . . . . . . . . . 38 4.2.2 Model Error Compensator . . . . . . . . . . . . . . . . . . . . 40 4.3 Discrete-Time Variable Structure Controller Design . . . . . . . . . . 44 4.3.1 Optimal Switching Function Design . . . . . . . . . . . . . . . 46 4.3.2 Discrete-Time Variable Structure Control Law with a Disturbance Force Observer . . . . . . . . . . . . . . . . . . . . . . . 49 5 Numerical Results and Discussions 52 5.1 Nearly Optimal Control with a Disturbance Force Observer . . . . . . 52 5.1.1 Observation Spillover E ect Discussion . . . . . . . . . . . . . 53 5.1.2 Estimated States by Using Modal Filters . . . . . . . . . . . . 55 5.1.3 Disturbance Force Observer . . . . . . . . . . . . . . . . . . . 56 5.1.4 Modal Space Control . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 H1-Based Controller with a Model Error Compensator . . . . . . . . 60 5.2.1 Estimated States by Using Modal Filters . . . . . . . . . . . . 60 5.2.2 Modal Space Vibration Control with H1 Controller and MEC 61 5.3 Discrete-Time Variable Structure Control . . . . . . . . . . . . . . . . 65 5.3.1 Estimated States by Using Modal Filters . . . . . . . . . . . . 665.3.2 Modal Space Vibration Control by the Discrete-Time Variable Structure Control Method . . . . . . . . . . . . . . . . . . . . 66 5.4 The Comparisons of the Three Control Methods . . . . . . . . . . . . 70 6 Conclusions 72 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.2 Recommendations for Future Investigation . . . . . . . . . . . . . . . 74 Bibliography 75 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

    1. C. R. Fuller, S. J. Elliott, and P. A. Nelson, Active Control of Vibration.
    London: Academic Press Limited, 1996.
    2. C. H. Hansen and S. D. Snyder, Active Control of Noise and Vibration. London:
    E & FN SPON, 1997.
    3. R. L. Clark, W. R. Saunders, and G. P. Gibbs, Adaptive Structures, Dynamics
    and Control. New York: John Wiley & Sons, Inc., 1998.
    4. W. Gawronski, Balanced Control of Flexible Structures. London: Springer-
    Verlag, 1996.
    5. S. M. Joshi, Control of Large Flexible Space Structures. Berlin: Springer-
    Verlag, 1989.
    6. K. V. Frolov and F. A. Furman, Applied Theory of Vibration Isolation System.
    New York: Hemisphere Publishing Corporation, 1990.
    7. H. S. Tzou and L. A. Bergman, Dynamics and Control of Distributed Systems.
    UK: Cambridge University Press, 1998.
    8. H. H. E. Leipholz and M. A. Rohman, Control of Structures. Boston: Kluwer
    Academic, 1986.
    9. K. Seto, F. Doi, and M. Ren, Vibration control of bridge towers using a
    lumped modeling approach," ASME Journal of Vibration and Acoustics, vol.
    121, pp. 95-100, January 1999.
    10. J. Yang, Y. Suematsu, and Z. Kang, Two-degree-of-freedom controller to
    reduce the vibration of vehicle engine-body system," IEEE Transactions on
    Control Systems Technology, vol. 9, pp. 295-304, March 2001.
    11. S. M. Yang, G. J. Sheu, and C. D. Yang, Vibration control of rotor systems
    with noncollocated sensor/actuator by experimental Design," ASME Journal
    of Vibration and Acoustics, vol. 119, pp. 420-427, July 1997
    75
    12. S. M. Yang and G. J. Sheu, Vibration control of a rotating shaft: an analytical
    solution," ASME Journal of Applied Mechanics, vol. 66, pp. 254-259, March
    1999.
    13. M. J. Balas, Active Control of Flexible Systems," Journal of Optimization
    Theory and Applications, vol. 25, pp. 415-436, 1978.
    14. A. Grewal and V. J. Modi, Robust attitude and vibration control of the space
    station," Acta Astronautica, vol. 38, pp. 139-160, 1996.
    15. G. W. Neat, W. Melody, and B. J. Lurie, Vibration attenuation approach for
    spaceborne optical interferometers," IEEE Transactions on Control Systems
    Technology, vol. 6, pp. 689-700, November 1998.
    16. B. N. Agrawal and H. Bang, Adaptive structures for large precision antennas,"
    Acta Astronautica, vol. 38, pp. 175-183, 1996.
    17. S. M. Joshi and A. G. Kelkar, Inner loop control of supersonic aircraft in
    the presence of aeroelastic modes," IEEE Transactions on Control Systems
    Technology, vol. 6, pp. 730-739, November 1998.
    18. R. F. Fung and C. C. Liao, Application of variable structure control in the
    nonlinear string system," International Journal of Mechanical Sciences, vol.
    37, pp. 985-993, 1995.
    19. S. Ying and C. A. Tan, Active vibration control of the axially moving string
    using space feedforward and feedback controllers," ASME Journal of Vibration
    and Acoustics, vol. 118, pp. 306-312, July 1996.
    20. S. Kalaycioglu, M. Giray, and H. Asmer, Vibration control of
    exible manipulators
    using smart structures," Journal of Aerospace Engineering, vol. 11,
    pp. 90-94, July 1998.
    21. C. Y. Kuo and C. C. Huang, Active control of mechanical vibration in a circular
    disk," ASME Journal of Dynamic Systems, Measurement, and Control,
    vol. 114, pp. 104-112, March 1992.
    22. M. J. Balas, Modal Control of Certain Flexible Dynamic System," SIAM
    Journal on Control and Optimization, vol. 16, pp. 450-462, 1978.
    23. L. Meirovitch and L. M. Silverberg, Globally Optimal Control of Self-Adjoint
    Distributed Systems," Optimal Control Applications and Methods, vol. 4, pp.
    365-386, 1983.
    24. L. Meirovitch, Some Problems Associated with the Control of Distributed
    Structures," Journal of Optimization Theory and Applications, vol. 54, pp.
    1-21, 1987.
    76
    25. L. Meirovitch, H. Baruh, R. C. Montgomery and J. P. Williams, Nonlinear
    Natural Control of an Experimental Beam," Journal of Guidance, Control,
    and Dynamics, vol. 7, pp. 437-442, July-August 1984.
    26. B. E. Schafer and H. Holzach, Experimental Research on Flexible Beam
    Modal Control," Journal of Guidance, Control, and Dynamics, vol. 8, pp.
    597-604, September-October 1985.
    27. L. Meirovitch and H. Baruh, Control of Self-Adjoint Distributed-Parameter
    Systems," Journal of Guidance and Control, vol. 5, pp. 60-66, January-
    February, 1982.
    28. L. Meirovitch, Dynamics and Control of Structures. New York: John Wiley
    & Sons, 1990.
    29. Y. Yam, T. L. Johnson, and J. H. Lang, Flexible system model reduction and
    control system design based upon actuator and sensor in
    uence functions,"
    IEEE Transactions on Automatic Control, vol. AC-32, pp. 573-582, July
    1987.
    30. W. Gawronski and T. Williams, Model reduction for
    exible space structures,"
    Journal of Guidance, Control, and Dynamics, vol. 14, pp. 68-76,
    January-February 1991.
    31. A. Suleman, V. J. Modi, and V. B. Venkayya, Structural modeling issues in
    exible systems," AIAA Journal, vol. 33, pp. 919-923, May 1995.
    32. L. Meirovitch and H. Baruh, The Implementation of Modal Filters for Control
    of Structures," Journal of Guidance, Control, and Dynamics, vol. 8, pp. 707-
    716, November-December 1985.
    33. A. Baz and S. Poh, Performance of An Active Control System with Piezoelectric
    Actuators," Journal of Sound and Vibration, vol. 126, pp. 327-343,
    1988.
    34. A. Baz and S. Poh, Experimental Implementation of The Modi ed Independent
    Modal Space Control Method," Journal of Sound and Vibration, vol. 139,
    pp. 133-149 1990.
    35. C. K. Lee and F. C. Moon, Modal sensors/actuators," ASME Journal of
    Applied Mechanics, vol. 57, pp. 434-441, May 1990.
    36. Zhang Xianmin, Liu Hongzhao and Caoweiqing, Active vibration control of
    exible mechanisms," Chinese Journal of Mechanical Engineering, vol. 32, pp.
    9-16, 1996.
    37. Shao Changjian and Zhang Xianmin, Complex mode active vibration control
    of high-speed
    exible linkage mechanisms," Journal of Sound and Vibration,
    vol. 234, pp. 491-506, 2000.
    77
    38. D. J. Inman, Active Modal Control for Smart Structures," Philosophical
    Transactions of the Royal Society, Series A, vol. 359(1778), pp. 205-219,
    2001.
    39. G. J. Balas and J. C. Doyle, Control of lightly damped,
    exible modes in
    the controller crossover region," Journal of Guidance, Control, and Dynamics,
    vol. 17, pp. 370-377, March-April 1994.
    40. G. J. Balas and J. C. Doyle, Robustness and performance trade-o s in control
    for
    exible structures," IEEE Transactions on Control Systems Technology,
    vol. 2, pp.352-361, December 1994.
    41. I. N. Kar, T. Miyakura, and K. Seto, Bending and torsional vibration control
    of a
    exible plate structure using H-in nity -based robust control law," IEEE
    Transactions on Control Systems Technology, vol. 8, pp.545-553, May 2000.
    42. I. N. Kar, K. Seto, and F. Doi, Multimode vibration control of a
    exible
    structure using H-in nity -based robust control," IEEE/ASME Transactions
    on Mechatronics, vol. 5, pp. 23-31, March 2000.
    43. R. S. Smith, C. C. Chu, and J. L. Fanson, The design of H-in nity controllers
    for an experimental non-collocated
    exible structure problem," IEEE
    Transactions on Control Systems Technology, vol. 2, pp. 101-109, June 1994.
    44. W. Gawronski and K. B. Lim, Frequency weighting for the H-in nity and
    H-2 control design of
    exible structures," Journal of Guidance, Control, and
    Dynamics, vol. 21, pp.664-666, July-August 1998.
    45. C. J. Damaren and L. L. Ngoc, Robust active vibration control of a bandsaw
    blade," ASME Journal of Vibration and Acoustics, vol. 122, pp. 69-76,
    January 2000.
    46. M. D. Piedmonte, P. H. Meckl, O. D. Nwokah, and M. A. Franchek, Multivariable
    vibration control of a coupled
    exible structure using QFT," International
    Journal of Control, vol. 69, pp. 475-498, 1998.
    47. S. B. Choi and S. S. Cho, Vibration and position tracking control of piezoceramic
    based smart structures via QFT," ASME Journal of Dynamics, Measurements,
    and Control, vol. 121, pp. 27-33, March 1999.
    48. I. Horowitz, Survey of quantitative feedback theory (QFT)," International
    Journal of Control, vol. 53, pp. 255-291, 1991
    49. J. S. Vipperman, R. A. Burdisso, and C. R. Fuller, Active control of broadband
    structural vibration using the LMS adaptive algorithm," Journal of
    Sound and Vibration, vol. 166, pp. 283-299, 1993.
    78
    50. J. S. Vipperman and R. A. Burdisso, Adaptive feedforward control of nonminimum
    phase structural systems," Journal of Sound and Vibration, vol. 183,
    pp. 369-382, 1995.
    51. H. S. Na and Y. Park, An adaptive feedforward controller for rejection of
    periodic disturbances," Journal of Sound and Vibration, vol. 201, pp. 427-
    435, 1997.
    52. J. K. Hwang, C. H. Choi, C. K. Song, and J. M. Lee, Robust LQG control of
    an all- clamped thin plate with piezoelectric actuators/sensors," IEEE/ASME
    Transactions on Mechatronics, vol. 2, pp. 205-212, September 1997.
    53. D. Young, Variable Structure Control for Robotics and Aerospace Application.
    London: Elsevier, 1993
    54. V. Rao, R. Damle, C. Tebbe, and F. Kern, The adaptive control of smart
    structures using neural networks," Smart Materials & Structures, vol. 3, pp.
    354-366, 1994.
    55. S. M. Yang and G. S. Lee, Vibration control of smart structures by using
    neural networks," ASME Journal of Dynamic Systems, Measurement, and
    Control, vol.119, pp. 34-35, March 1997.
    56. S. E. Burke and J. E. Hubbard, Distributed transducer vibration control of
    thin plates," Journal of the Acoustical Society of America, vol. 90, pp. 937-
    944, August 1991.
    57. Y. Gu, R. L. Clark, C. R. Fuller, and A. C. Zander, Experiments on active
    control of plate vibration using piezoelectric actuators and polyvinylidene
    uoride
    (PVDF) modal sensors," ASME Journal of Vibration and Acoustics, vol.
    116, pp. 303-308, July 1994.
    58. D. Sun, L. Tong, and D. Wang, Vibration control of plates using discretely
    distributed piezoelectric quasi-modal actuators/sensors," AIAA Journal, vol.
    39, pp. 1766-1772, September 2001.
    59. E. Gordaninejad, A. Ray, and H. Wang, Control of forced vibration using
    multi- electrode electrorheological
    uid dampers," ASME Journal of Vibration
    and Acoustics, vol. 119, pp. 527-531, October 1997.
    60. B. L. Meng and J. S. Gibson, Optimal design of ber optic sensors for control
    of
    exible structures," Smart Material Structures, vol. 3, pp. 397-408, 1994.
    61. R. L. Clark and S. E. Burke, Practical limitations in achieving shaped modal
    sensors with induced strain materials," ASME Journal of Vibration and Acoustics,
    vol. 118, pp. 668-675, October 1996.
    79
    62. J. Leng, A. Asundi, and Y. Liu, Vibration control of smart composite beams
    with embedded optical ber sensor and ER
    uid," ASME Journal of Vibration
    and Acoustics, vol. 121, pp. 508-509, October 1999.
    63. A. Ghoshal, E. A. Wheater, C. R. A. Kumar, and M. J. Sundaresan, Vibration
    suppression using a laser vibrometer and piezoceramic patches," Journal of
    Sound and Vibration, vol. 235, pp. 261-280, 2000.
    64. D. F. Crawley, Intelligent structures for aerospace: a technology overview
    and assessment," AIAA Journal, vol. 32, pp. 1689-1699, August 1994.
    65. S. H. Chen, Z. D. Wang, and X. H. Liu, Active vibration control and suppression
    for intelligent structures," Journal of Sound and Vibration, vol. 200,
    pp. 167-177, 1997.
    66. K. Y. Sze and L. Q. Yao, Modeling smart structures with segmented piezoelectric
    sensors and actuators," Journal of Sound and Vibration, vol. 235, pp.
    495-520, 2000.
    67. R. E. Zee and P. C. Hughes, Mode localization in
    exible spacecraft: a control
    challenge," Journal of Guidance, Control, and Dynamics, vol. 23, pp. 69-76.
    January- February 2000.
    68. M. L. DeLorenzo, Sensor and actuator selection for large space structure
    control," Journal of Guidance, Control, and Dynamics, vol. 13, pp. 249-257,
    March-April 1990.
    69. Y. K. Kang, H. C. Park, W. Hwang, and K. S. Han, Optimum placement of
    piezoelectric sensor/actuator for vibration control of laminated beams," AIAA
    Journal, vol. 34, pp. 1921-1926, September 1996.
    70. M. Sunar and S. S. Rao, Distributed modeling and actuator location for
    piezoelectric control systems," AIAA Journal, vol. 34, pp. 2209-2211, October
    1996.
    71. J. Q. Sun, S. M. Hirsch, and V. Jayachandran, Sensor systems for global
    vibration and noise control," Journal of the Acoustical Society of America,
    vol. 103, pp. 1504- 1509, March 1998.
    72. G. J. Balas and P. M. Young, Sensor selection via closed-loop control objectives,"
    IEEE Transactions on Control Systems Technology, vol. 7, pp. 692-705,
    November 1999.
    73. J. Kim, J. S. Hwang, and S. J. Kim, Design of modal transducers by optimizing
    spatial distribution of discrete gain weights," AIAA Journal, vol. 39,
    pp. 1969-1976, October 2001.
    80
    74. D. Ertur, Y. Li and C. D. Rahn, Adaptive Vibration Isolation for Flexible
    Structures," ASME Journal of Vibration and Acoustics, vol. 121, pp. 440-445,
    March, 1999.
    75. S. Choura, Control of Flexible Structures with the Con nement of Vibrations,"
    ASME Journal of Dynamic Systems, Measurement, and Control, vol.
    117, pp. 155-164, January, 1995.
    76. B. Friedland, Control System Design. New York: McGraw-Hill Book Company,
    1987.
    77. Y. Park and J. L. Stein, Closed-loop, state inputs observer for systems with
    unknown inputs," International Journal of Control, vol. 48, pp. 1122-1136,
    1988.
    78. M. Hou and P. C. Muller, Design of Observers for Linear Systems with Unknown
    Inputs," IEEE Transactions on Automatic Control, vol. 37, pp. 871-
    875, November, 1992.
    79. J. F. Tu and J. L. Stein, Model Error Compensator for Observer Design,"
    International Journal of Control, vol. 69, pp. 329-345, 1998.
    80. J. Y. Hung, W. Gao and J. C. Hung, Variable Structure Control: A Survey,"
    IEEE Transactions on Industrial Electronics, vol. 40, pp. 2-22, January, 1993.
    81. W. Gao, and J. C. Hung, Variable Structure Control of Nonlinear Systems:
    A New Approach," IEEE Transactions on Industrial Electronics, vol. 40, pp.
    45-55, January, 1993.
    82. W. Gao, Y. Wang and A. Homaifa, Discrete-Time Variable Structure Control
    Systems," IEEE Transactions on Industrial Electronics, vol. 42, pp. 117-122,
    March, 1995.
    83. Y. Eun, J. H. Kim and D. Cho, Discrete-Time Variable Structure Controller
    with a Decoupled Disturbance Compensator and Its Application to a CNC
    Servomechanism," IEEE Transactions on Control Systems Technology, vol. 7,
    pp. 414-423, July, 1999.
    84. L. Meirovitch, Analytical Methods in Vibration. New York: The MacMillan
    Company, 1967.
    85. S. Timoshenko, Vibration Problem in Engineering, 3rd ed. New Jersey: Van
    Nostrand, Princeton, 1955.
    86. E. Kreyszig, Advanced Engineering Mathematics, 5th ed. New York: John
    Wiley & Sons, 1983.
    87. K. Zhou and P. P. Khargonekar, An algebraic Riccati equation approach to
    H1 Optimization," Systems & Control Letters, vol. 11, pp. 85-91, 1988.
    81
    88. P. J. Moylan, Stable Inversion of Linear System," IEEE Transactions on
    Automatic Control, vol. 22, pp. 74-78, January, 1977.
    89. G. Gu and P. Misra, Disturbance Attenuation and H1 Optimization with
    Linear Output Feedback Control," Journal of Guidance, Control, and Dynamics,
    vol. 17, pp. 145-152, January-February, 1994.
    90. J. E. Dennis, Jr and D. J.Woods, New Computing Environments: Microcomputers
    in Large-Scale Computing," SIAM Journal on computing, pp. 116-122,
    1987.
    91. V. I. Utkin, Sliding Modes in Control and Optimization. Berlin: Springer-
    Verlag, 1992.
    92. W. B. Gao, Foundation of Variable Structure Control. Beijing: China Press
    of Science and Technology, 1990 (in Chinese).
    93. A. J. Koshkouei and A. S. I. Zinober, Sliding Mode Control of Discrete-Time
    Systems," ASME Journal of Dynamic Systems, Measurement and Control,
    vol. 122, pp. 793-802, July, 2000.
    94. H. Elmali and N. Olgac, Implementation of Sliding Mode Control with Perturbation
    Estimation (SMCPE)," IEEE Transactions on Control Systems Technology,
    vol. 4, pp. 79-85, January, 1996.
    95. K. Ogata, Discrete-Time Control Systems, 2nd ed. New Jersey: Prentice-Hall
    Inc, 1995.

    QR CODE
    :::