跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳瑋陞
Wei-Sheng Chen
論文名稱: 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
The Concurrent Observations of the Ionospheric F-region Plasma Density Irregularity Using Ionosonde and Global Positioning System
指導教授: 劉正彥
Jann-Yenq Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 95
語文別: 中文
論文頁數: 118
中文關鍵詞: 電漿密度不規則體相位擾亂電離層全球定位系統電離層探測儀
外文關鍵詞: Ionosphere, Ionosonde, Phase fluctuations, Irregularity, GPS
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電離層中之電漿密度不規則體會影響電磁波的傳播,其中電離層探測儀所觀測到的散狀F層,以及全球定位系統之相位擾亂均屬於此一範疇。利用全球定位系統之相位擾亂觀測量研究電離層中之電漿密度不規則體開始於90年代初期。但相關的研究並不充裕,且相位擾亂的變化模式也並不完全清楚。另一方面,電離層探測儀之散狀F層現象已研究了超過50年,相關的現象已有一定之理論基礎。是故本篇論文利用上述兩種技術共同觀測不同緯度之電漿密度不規則體。透過比對兩種技術之觀測結果,以期對於相位擾亂的變化模式有更深的認識,並探討其中隱含之物理意義。研究的範圍囊括磁赤道地區、赤道異常區以及中緯度地區。觀測時間則選在1999年至2000年,此時為太陽活動極大期。研究方法為統計散狀F層與相位擾亂的發生機率,比較兩者之月變化與日變化。
    在磁赤道地區,觀測地點為祕魯。研究結果顯示,春秋季及夏季是散狀F層與相位擾亂的好發期,其中強烈之相位擾亂集中在春秋季。此外,電漿密度不規則體在前半夜的高度分布範圍較廣,而相位擾亂在前半夜也較強烈。整個散狀F層與相位擾亂的發生機率月變化與日變化符合漂移速度之變化。此研究也證實相位擾亂與電漿密度不規則體的高度分布範圍有關。
    在赤道異常區,觀測地點為台灣。觀測結果顯示,散狀F層主要分布在春秋季的前半夜及夏季的後半夜。相位擾亂則集中在春秋季與夏季的子夜附近,且幾乎沒有強烈的相位擾亂出現。赤道異常區的變化顯示,由於電漿密度不規則體沿磁力線分布的特性,在磁赤道地區的高度分布範圍直接影響赤道異常區的相位擾亂大小。
    在中緯度地區,觀測地點為武漢。研究結果顯示,散狀F層與相位擾亂僅出現在夏季。散狀F層主要分布在子夜之後,相位擾亂則分布在子夜附近。中緯度地區同樣沒有強烈的相位擾亂出現,且散狀F層與相位擾亂的月變化與赤道異常區的觀測結果不同,顯示中緯度地區的電漿密度不規則體產生機制與磁赤道地區無關。此外,與其它的文獻比較後發現,中緯度地區的電漿密度不規則體可能與電離層行進式擾動有關。


    The plasma density irregularities, which exist in ionosphere, can influence the propagation of radio waves. The ionosonde spread F and GPS phase fluctuations belong to this kind of phenomena. The observation of GPS phase fluctuations started from 1990s. However, the amount of research of this parameter is still few, and its occurrence pattern is not studied in detail. On the other hand, the ionosonde spread F has been investigated for over 50 years, and the behavior of its variations is well known. In this dissertation, we make use of the two different instruments, the ionosonde and the GPS, to observe the irregularities in different latitudes, concurrently. By comparing the two observations, we want to study about the variations of GPS phase fluctuations, and to understand the physical meaning behind the variations. The observation have been conducted at the geomagnetic equator, equatorial ionization anomaly region, and mid-latitudes during 1999 to 2000. We calculate the relative occurrences of spread F and GPS phase fluctuations, and then compare their monthly and daily variations.
    The observations from Peru have been used for the study at the geomagnetic equatorial region. The results show that the spread F and the GPS phase fluctuations frequently occur during equinox and summer, however, the intense GPS phase fluctuations are more often in equinox. Moreover, the irregularities have larger altitudinal distribution range in the pre-midnight hours, and the GPS phase fluctuations are also more intense in this period. The variation patterns of spread F and GPS phase fluctuations can be explained based on ExB drift variation, and the comparison also confirm that the GPS phase fluctuations are related to the altitudinal range of the distribution of irregularities.
    In Equatorial ionization anomaly region, the observations were carried out in Taiwan. In this region, the spread F mainly occurs in the pre-midnight period in equinox, and in the post-midnight period in summer. The GPS phase fluctuations have high occurrences around the midnight in equinox and summer. Moreover, there is almost no intense GPS phase fluctuations. Since the irregularities are magnetic field aligned, their altitudinal distribution range at the geomagnetic equator directly influence the intensity of GPS phase fluctuations at the equatorial ionization anomaly region.
    The data from Wuhan is selected to study the variations at the mid-latitude region. The observations show that the spread F and the GPS phase fluctuations have high occurrences in summer. The spread F mainly occur in the post-midnight period, and the GPS phase fluctuations peak around midnight. The observations also indicate the absence of intense GPS phase fluctuations at Wuhan. The monthly variations of two instrument observations show that the pattern at Wuhan is very different from that at the equatorial ionization anomaly region. This result suggests that the physical mechanism of irregularities in the mid-latitude region is unrelated with the processes at the geomagnetic equatorial region. Moreover, it seems that the irregularities in mid-latitudes are related to the traveling ionospheric disturbances.

    中文摘要 ... i 英文摘要 ... iii 誌謝 ... v 目錄 ... vi 圖目錄 ... vii 表目錄 ... x 一、緒論 ... 1 二、電漿密度不規則體 ... 9 2-1 歷史演進 ... 9 2-2 R-T不穩定機制 ... 19 三、觀測儀器 ... 22 3-1 電離層探測儀 ... 22 3-2 散狀F層 ... 26 3-3 全球定位系統 ... 28 3-4 相位擾亂 ... 32 四、觀測結果與討論 ... 35 4-1 磁赤道地區 ... 35 4-2 赤道異常區 ... 55 4-3 中緯度地區 ... 71 五、結論 ... 87 參考文獻 ... 90 附錄一、GPS量測TEC原理 ... 101

    Aarons, J. (1993), The longitudinal morphology of equatorial F-layer irregularities relevant to their occurrence, Space Sci. Rev., 63, 209-243.
    Aarons, J., M. Medillo, and R. Yantosca (1997), GPS phase fluctuations in the equatorial region during sunspot minimum, Radio Sci., 32, 1535-1550.
    Abdu, M. A., J. A. Bittencourt, and I. S. Batista (1981), Magnetic declination control of the equatorial F region dynamo electric field development and spread F, J. Geophys. Res., 86, 11443-11446.
    Abdu, M. A., J. H. A. Sobral, O. R. Nelson, and I. S. Batista (1985), Solar cycle related range type spread-F occurrence characteristics over equatorial and low latitude stations in Brazil, J. Atmos. Terr. Phys., 47, 901-905.
    Argo, P. E., and M. C. Kelley (1986), Digital ionosonde observations during equatorial spread F, J. Geophys. Res., 91, 5539-5555.
    Basu, S., J. Aarons, J. P. McClure, C. La Hoz, A. Bushby, and R. F. Woodman (1977), Preliminary comparisons of VHF radar maps of F-region irregularities with scintillations in the equatorial region., J. Atmos. Terr. Phys., 39, 1251-1261.
    Basu, S., K. M. Groves, J. M. Quimm, and P. Doherty (1999), A comparison of TEC fluctuations and scintillations at Ascension Island, J. Atmos. Sol. Terr. Phys., 61, 1219-1226.
    Booker, H. G., and H. W. Wells (1938), Scattering of radio waves by the F region ionosphere, J. Geophys. Res., 43, 249-256.
    Bowman, G. G. (1960), Some aspects of sporadic-E at mid-latitudes, Planet. Space Sci., 2, 195-211.
    Bowman, G. G. (1981), The nature of ionospheric spread-F irregularities in mid-latitude regions, J. Atmos. Terr. Phys., 43, 65-79.
    Bowman, G. G. (1984), A comparison of mid-latitude and equatorial spread-F characteristics, J. Atmos. Terr. Phys., 46, 65-71.
    Bowman, G. G. (1985), Some aspects of mid-latitude spread Es and its relationships with spread F, Planet. Space Sci., 33, 1081-1089.
    Bowman, G. G. (1990), A review of some recent work on mid-latitude spread-F occurrence as detected by ionosonde, J. Geomag. Geoelectr., 42, 109-138.
    Calvert, W., and R. Cohen (1961), The interpretation and synthesis of certain spread-F configurations appearing on equatorial ionograms, J. Geophys. Res., 66, 3125-3140.
    Chen, W. S., C. C. Lee, J. Y. Liu, F. D. Chu, and B. W. Reinisch (2006), Digisonde spread F and GPS phase fluctuations in the equatorial ionosphere during solar maximum, J. Geophys. Res., 111, A12305, doi:10.1029/2006JA011688.
    Cohen, R., and K. L. Bowles (1961), On the nature of equatorial spread F, J. Geophys. Res., 66, 1081-1106.
    Dabas, R. S., R. M. Das, K. Sharma, S. C. Garg, C. V. Devasia,K. S. V. Subbarao, K. Niranjan, P. V. S. Rama Rao (2007), Equatorial and low latitude spread-F irregularity characteristics over the Indian region and their prediction possibilities, J. Atmos. Sol. Terr. Phys., 69, 685-696.
    Dagg, M. (1957), The origin of the ionospheric irregularities responsible for radio star scintillation and spread-F–I Review of existing theories, J. Atmos. Terr. Phys., 11, 133-138.
    Davies, K. (1990), Ionospheric Radio, Peter Peregrinus Ltd, London, UK.
    Dungey, J. W. (1956), Convective diffusion in equatorial F-region, J. Atmos. Terr. Phys., 9, 304-310.
    Farley, D. T., B. B. Balsley, R. F. Woodman, and J. P. McClure (1970), Equatorial spread F: Implications of VHF radar observations, J. Geophys. Res., 75, 7199-7216.
    Fejer, B. G., L. Scherliess, and E. R. de Paula (1999), Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19859-19869.
    Haldoupis, C., M. C. Kelley, G. C. Hussey, and S. Shalimov (2003), Role of unstable sporadic-E layers in the generation of midlatitude spread F, J. Geophys. Res., 108(A12), 1446, doi:10.1029/2003JA009956.
    Ho, C. M., A. J. Mannucci, U. J. Lindqwister, X. Pi, and B. T. Tsurutani (1996), Global ionosphere perturbations monitored by the worldwide GPS network, Geophys. Res. Lett., 23, 3219-3222.
    Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (1997), Global positioning system, theory and practice, 4th rev. ed., SpringerWienNewYork, Austria.
    Huang, Y. N. (1985), Ionospheric electron content depletion associated with amplitude scintillation at the equatorial anomaly crest region, J. Geophys. Res., 90, 4333-4339.
    Huang, C. Y., W. J. Burke, J. S. Machuzak, L. C. Gentile, and P. J. Sultan (2001), DMSP observations of equatorial plasma bubbles in the topside ionosphere near solar maximum, J. Geophys. Res., 106, 8131-8142.
    Huba, J. D., P. A. Bernhardt, S. L. Ossakow, and S. T. Zalesak (1996), The Rayleigh-Taylor instability is not damped by recombination in the F region, J. Geophys. Res., 101(A11), 24553-24556.
    Hudson, M. K., and C. F. Kennel (1975), Linear theory of equatorial spread F, J. Geophys. Res., 80, 4581-4590.
    Kelly, T. D. (1981), Preliminary instructions for turning on, setting up, and initial testing of IPS-42 ionosonde, KEL Aerospace PTY. Ltd., Australia.
    Kelley, M. C., G. Haerendel, H. Kappler, A. Valenzuela, B. B. Balsley, D. A. Carter, W. L. Ecklund, C. W. Carlson, B. Häusler, and R. Torbert (1976), Evidence for a Rayleigh-Taylor type instability and upwelling of depleted density regions during equatorial spread F, Geophys. Res. Lett., 3, 448-450.
    Kelley, M. C., M. F. Larsen, C. La Hoz, and J. P. McClure (1981), Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res., 86, 9087-9100.
    Kelley, M. C., et al. (1986), The Condor equatorial spread F campaign: Overview and results of the large-scale measurements, J. Geophys. Res., 91, 5487.
    Kelley, M. C., and R. A. Heelis (1989), The Earth’s Ionosphere, Plasma Physics and Electrodynamics, Academic Press, Inc., San Diego, California, USA.
    Kelley, M. C., and S. Fukao (1991), Turbulent upwelling of the mid-latitude ionosphere 2. Theoretical framework, J. Geophys. Res., 96(A3), 3747-3753.
    Kelley, M. C., and T. Maruyama (1992), A diagnostic model for equatorial spread F, 2. The effect of magnetic activity, J. Geophys. Res., 97, 1271-1277.
    Kelley, M. C., C. Haldoupis, M. J. Nicolls, J. J. Makela, A. Belehaki, S. Shalimov, and V. K. Wong (2003), Case studies of coupling between the E and F regions during unstable sporadic-E conditions, J. Geophys. Res., 108(A12), 1447, doi:10.1029/2003JA009955.
    King, G. A. (1970), Spread-F on ionogram, J. Atmos. Terr. Phys., 32, 209-211.
    Lee, C.-C., J.-Y. Liu, B. W. Reinisch, W.-S. Chen, and F.-D. Chu (2005a), The effects of the pre-reversal drift,the EIA asymmetry,and magnetic activity on the equatorial spread F during solar maximum, Ann. Geophys., 23, 745-751.
    Lee, C.-C., S.-Y. Su, and B. W. Reinisch (2005b), Concurrent study of bottomside spread F and plasma bubble events in the equatorial ionosphere during solar maximum using digisonde and ROCSAT-1, Ann. Geophys., 23, 3473-3480.
    Lee, C.-C. (2006), Examine the local linear growth rate of collisional Rayleigh-Taylor instability during solar maximum, J. Geophys. Res., 111, A11313, doi:10.1029/2006JA011925.
    Leick, A. (1994), GPS satellite surveying, 2nd ed., John Wiley & Sons, Inc., New York, USA.
    Lyon, A. J., N. J. Skinner, and R. W. Wright (1960), The belt of equatorial spread-F, J. Atmos. Terr. Phys., 19, 145-159.
    Lyon, A. J., N. J. Skinner, and R. W. Wright (1961), Equatorial spread-F at Ibadan, Nigeria, J. Atmos. Terr. Phys., 21, 100-119.
    Martyn, D. F. (1959), Large-scale movements of ionization in the ionosphere, J. Geophys. Res., 82, 2650.
    Maruyama, T., and N. Matuura (1984), Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles, J. Geophys. Res., 89, 10903-10912.
    Maruyama, T. (1988), A diagnostic model for equatorial spread F, 1. Model description and application to electric field and neutral wind effects, J. Geophys. Res., 93, 14611-14622.
    McClure, J. P., W. B. Hanson, and J. H. Hoffman (1977), Plasma bubbles and irregularities in the equatorial ionosphere, J. Geophys. Res., 82, 2650-2656.
    McClure, J. P., S. Singh, D. K. Bamgboye, F. S. Johnson, and H. Kil (1998), Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding, J. Geophys. Res., 103(A12), 29119-29136.
    McNicol, R. W. E., H. C. Webster, and G. G. Bowman (1956), A study of spread-F ionospheric echoes at night at Brisbane, 1. Range spreading (experimental), Aust. J. Phys., 9, 247-271.
    Mendillo, M., B. Lin, and J. Aarons (2000), The application of GPS observations to equatorial aeronomy, Radio Sci., 35, 885-904.
    Mendillo, M., J. Meriwether, and Manfred Biondi (2001), Testing the thermospheric neutral wind suppression mechanism for day-to-day variability of equatorial spread F, J. Geophys. Res., 106, 3655-3663.
    Osborne, B. W. (1951), Ionospheric behaviour in the F2 region at Singapore, J. Atmos. Terr. Phys., 2, 66-78.
    Ossakow, S. L., S. T. Zalesak, and B. E. McDonald (1979), Nonlinear equatorial spread F: Dependence on altitude of the F peak and bottomside background electron density gradient scale length, J. Geophys. Res., 84, 17-29.
    Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218-226.
    Pi, X., A. J. Mannucci, U. J. Lindqwister, and C. M. Ho (1997), Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 24, 2283-2286.
    Piggott, W. R. and K. Rawer (1972), U.R.S.I. Handbook of Ionogram Interpretation and Reduction, World Data Center A for Solar-Terrestrial Physics, Report UAG-23A.
    Rastogi, R. G. (1980), Seasonal and solar cycle variations of equatorial spread-F in the American zone, J. Atmos. Terr. Phys., 42, 593-597.
    Reinisch, B. W. (1993), Digisonde Protable Sounder (DPS) series system technical manual, Center for Atmospheric Research, Univ. Mass. Lowell, USA.
    Reinisch, B. W. (1996), Modern Ionosondes, in Modern Ionospheric Science, edited by H. Kohl, R. Ruster, and K. Schlegel, European Geophysical Society, 37191 Katlenburg-Lindau, Germany, 440-458.
    Sardón, E., A. Rius, and N. Zarraoa (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations, Radio Sci., 29, 577-586.
    Saito, A., M. Nishimura, M. Yamamoto, S. Fukao, T. Tsugawa, Y. Otsuka, S. Miyazaki, and M. C. Kelley (2002), Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime F-region ionosphere with the MU radar and a GPS network, Earth Planets Space, 54, 31-44.
    Scannapieco, A. J., and S. L. Ossakow (1976), Nonlinear equatorial spread F, Geophys. Res. Lett., 3, 451-454.
    Schunk, R. W., and A. F. Nagy (2000), Ionosphere: Physics, Plasma Physics, and Chemistry, Cambridge University Press, Cambridge, UK.
    Shalimov, S., and C. Haldoupis (2005), E-region wind-driven electrical coupling of patchy sporadic-E and spread-F at midlatitude, Ann. Geophys., 23, 2095-2105.
    Shiokawa, K., Y. Otsuka, M. K. Ejiri, Y. Sahai, T. Kadota, C. Ihara, T. Ogawa, K. Igarashi, S. Miyazaki, and A. Saito (2002), Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances, Earth Planets Space, 54, 57-62.
    Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa (2003), Statistical study of nighttime medium-scale traveling ionospheric distribution using midlatitude airglow images, J. Geophys. Res., 108, 1052, doi:10.1029/2002JA009491.
    Singleton, D. G., and G. J. E. Lynch (1962), The scintillation of the radio transmissions from Explorer VII - I The nature of the scintillations, J. Atmos. Terr. Phys., 24, 353-361.
    Su, S.-Y., C. H. Liu, H. H. Ho, and C. K. Chao (2006), Distribution characteristics of topside ionospheric density irregularities: Equatorial versus midlatitude regions, J. Geophys. Res., 111, A06305, doi:10.1029/2005JA011330.
    Sultan, P. J. (1996), Linear theory and modeling of the Rayleigth-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res., 101(A12), 26875-26891.
    Tanaka, T. (1982), Spatial and temporal distributions of midlatitude ionospheric scintillations observed by low-altitude satellites, J. Atmos. Terr. Phys., 44, 719-729.
    Tsunoda, R. T. (1985), Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity, J. Geophys. Res., 90, 447-456.
    Wanninger, L (1993). Ionospheric monitoring using IGS data. Paper presented at the 1993 Berne IGS Workshop, Berne, Switzerland.
    Weber, E. J., J. Buchau, R. H. Eather, and S. B. Mende (1978), North-south aligned equatorial airglow depletions, J. Geophys. Res., 93, 712-716.
    Whalen, J. A. (1998), Appleton anomaly increase following sunset: Its observed relation to equatorial F layer E x B drift velocity, J. Geophys. Res., 103, 9497-9504.
    Whalen, J. A. (2000), An equatorial bubble: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly, J. Geophys. Res., 105(A3), 5303-5316.
    Whalen, J. A. (2001), The equatorial anomaly: Its quantitative relation to equatorial bubbles, bottomside spread F, and E x B drift velocity during a month at solar maximum, J. Geophys. Res., 106(A12), 29125-29132.
    Whalen, J. A. (2002), Dependence of equatorial bubbles and bottomside spread F on season, magnetic activity, and E x B drift velocity during solar maximum, J. Geophys. Res., 107(A2), 1024, doi:10.1029/2001JA000039.
    Whalen, J. A. (2003), Dependence of the equatorial anomaly and of equatorial spread F on the maximum prereversal E x B drift velocity measured at solar maximum, J. Geophys. Res., 108(A5), 1193, doi:10.1029/2002JA009755.
    Wilson, B. D., A. J. Mannucci, and C. D. Edward (1995), Subdaily north-hemisphere maps using an extensive network of GPS receivers, Radio Sci., 30, 639-648.
    Wright, R. W., J. R. Koster, and N. J. Skinner (1956), Spread F-layer echoes and radio-star scintillation, J. Atmos. Terr. Phys., 8, 240-246.
    Wright, J. W., P. E. Argo, M. L. V. Pitteway (1996), On the radiophysics and geophysics of ionogram spread F, Radio Sci., 31, 349-366.
    Woodman, R. F., and C. La Hoz (1976), Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447-5466.
    Zalesak, S. T., and S. L. Ossakow (1980), Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations, J. Geophys. Res., 85, 2131-2142.
    Zalesak, S. T., and S. L. Ossakow (1982), Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity. J. Geophys. Res., 87, 151-166.
    黃鐘洺 (1978),電波傳播,聯經出版事業公司,台灣台北。
    GARMIN Ltd. (2000), GPS guide for beginners, from http://www8.garmin.com/manuals/GPSGuideforBeginners_Manual.pdf
    The Aerospace Corporation. (2003), GPS primer, A student guide to the Global Positioning System, from http://www.aero.org/education/primers/gps/GPS-Primer.pdf

    QR CODE
    :::