| 研究生: |
徐珮雯 Pei-Wen Xu |
|---|---|
| 論文名稱: |
運用因子選股與交易策略於台股美股雙市場的績效差異之比較與研究 Using Factor Analysis and Trading Strategy to Study Performance of Taiwan and US Stock Market |
| 指導教授: | 許智誠 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 量化交易 、多因子選股模型 、交易策略 |
| 外文關鍵詞: | Quantitative Trading, Multi-Factor Stock Selection Models, Technical Analysis |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
許多學者利用多因子選股模型試圖尋找在單一市場能為投資者創造超額報酬的因子,也加入交易策略以求進一步改善績效,然而鮮少有研究比較在相同選股模型基礎下,不同市場的因子與策略選擇是否會有差異,不同性質的股票市場是否可以運用同一個因子進行選股,相同因子在不同市場對績效的影響與差異。
本研究以Python建置回測系統,同時回測台股與美股市場,以統計檢定驗證14種單因子與4組雙因子個別在台股市場與美股市場的選股效果,並以買入持有、逆勢布林通道、逢低買進、逆勢高低通道、順勢布林通道五種策略驗證套用策略是否可以提高獲利或降低風險,比較台股、美股市場在選擇因子與套用策略是否有差異。
Many scholars utilize multi-factor stock selection models in an attempt to identify factors that can generate profit for investors in a single market. They also incorporate trading strategies to improve performance. However, few studies compare whether there are differences in factors and strategy selection between different markets on the same stock selection mode. The question arises whether factors that work in one market can be applied to different markets, and the impact and differences in performance of the same factors across different markets.
In this study, a backtesting system is developed using Python to simultaneously backtest the Taiwan and US stock markets. Fourteen single-factor and four dual-factor models are statistically tested to verify their stock selection effectiveness in the Taiwan and US markets. Additionally, five strategies including buy and hold, inverse Bollinger Bands, bargaining hunting, inverse high-low channels, and Bollinger Bands are applied to examine whether the utilization of these strategies can enhance profitability or reduce risk. The study aims to compare whether there are differences in factor selection and strategy implementation between the Taiwan and US stock markets.
Bollinger, J. (2001). Bollinger on Bollinger Bands. McGraw-Hill Education.
Carhart, M. M. (1997). On persistence in mutual fund performance. The journal of finance, 52(1), 57-82.
Davey, K. J. (2014). Building Winning Algorithmic Trading Systems : A Trader’s Journey from Data Mining to Monte Carlo Simulation to Live Trading. Wiley.
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56.
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22.
FMP. (2022). Financial Modeling Prep. https://site.financialmodelingprep.com/
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), 583-621.
MSCI. (2022). Market classification. https://www.msci.com/our-solutions/indexes/market-classification
Pardo, R. (2008). The Evaluation and Optimization of Trading Strategies. Wiley.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611.
TEJ. (2022). 台灣經濟新報資料庫. https://www.tej.com.tw/
Tortoriello, R. (2008). Quantitative Strategies for Achieving Alpha: The Standard and Poor's Approach to Testing Your Investment Choices. McGraw-Hill Finance & Investing.
Zar, J. H. (2010). Biostatistical Analysis. Pearson.
丁鵬 (2012)。量化投資:策略與技術。 電子工業出版社。
王崇驊 (2022)。結合因子選股與系統交易的股票操作系統之分析設計與實作 – 以美股市場為例。 國立中央大學資訊管理學系研究所碩士論文,未出版,桃園市。
卓育辰 (2021)。結合因子分析與程式交易應用於台股之自動化回測與驗證平台。 國立中央大學資訊管理學系研究所碩士論文,未出版,桃園市。
林柏年 (2022)。以量化交易驗證類股輪動策略之挑選原則與績效評估— 以美股為例。 國立中央大學資訊管理學系研究所碩士論文,未出版,桃園市。
栗原伸一, & 丸山敦史 (2019)。統計學圖鑑。 楓葉社文化。
張林忠 (2014)。分析師關鍵報告 2 :張林忠教你程式交易。 寰宇。