跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建勳
Chien-Hsun Chen
論文名稱: 非平衡生物膜上的區塊形成
Finite-size Domains in a Membrane with Two-state Active Inclusions
指導教授: 陳宣毅
Hsuan-Yi Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 英文
論文頁數: 49
中文關鍵詞: 細胞膜模擬生物物理
外文關鍵詞: simulation, membrane, physics, biological
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種可在非平衡生物膜上形成具有特徵大小的區塊的模型,並以蒙地卡羅模擬法來探討此模型與生物系統之關聯。本模型考慮由一種脂質分子與一種兩態活性分子組成之系統。兩種具有不同交互作用的特例被提出並討論之:(1)激發態活性分子傾向聚集﹔(2)基態活性分子傾向聚集。我們發現以下的結論:(i)藉由調整兩態活性分子的活性大小,可調控膜上區塊的大小。(ii)活性分子的密度與膜曲率的耦合可使區塊大小具有形成特徵大小的上限。(iii) 活性分子在膜上的擴散率亦與上述兩特性有關。


    We propose a model that leads to the formation of non-equilibrium
    finite-size domains in a biological membrane. Our model considers
    the active conformational change of the inclusions and the coupling
    between inclusion density and membrane curvature. Two special cases
    with different interactions are studied by Monte Carlo simulations.
    In case (i) exited state inclusions prefer to aggregate. In case
    (ii) ground state inclusions prefer to aggregate. When the inclusion
    density is not coupled to the local membrane curvature, in case (i)
    the typical length scale ($sqrt{M}$) of the inclusion clusters
    shows weak dependence on the excitation rate ($K_{on}$) of the
    inclusions for a wide range of $K_{on}$ but increases fast when
    $K_{on}$ becomes sufficiently large; in case (ii) $sqrt{M}sim
    {K_{on}}^{-frac{1}{3}}$ for a wide range of $K_{on}$. When the
    inclusion density is coupled to the local membrane curvature, the
    curvature coupling provides the upper limit of the inclusion
    clusters. In case (i) (case (ii)), the formation of the inclusions
    is suppressed when $K_{off}$ ($K_{on}$) is sufficiently large such
    that the ground state (excited state) inclusions do not have
    sufficient time to aggregate. We also find that the mobility of an
    inclusion in the membrane depends on inclusion-curvature coupling.
    Our study suggests possible mechanisms that produce finite-size
    domains in biological membranes.

    1 Introduction 1 2 The model 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Simulation method 11 3.1 Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Monte Carlo step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 Statistics of cluster size . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Simulation results and discussion 21 4.1 Cluster size distribution . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1 Short-time in-plane motions of inclusions . . . . . . . . . . . . 27 4.2.2 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.3 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 iii 5 Summary 40 A Non-dimensionalization of the Hamiltonian 47

    [1] H. Lodish et al., Molecular cell biology, 3rd ed (W.H. Freeman, New York, 1995).
    [2] G. Vereb et al, Proc. Natl. Acad. Sci. USA 100, 8053, (2003).
    [3] S.L. Veatch, I.V. Polozov, K. Gawrisch, and S.L. Keller, Biophys. J. 86, 2910,
    (2004).
    [4] M.S. Turner, P. Sens, and N.D. Socci, Phys. Rev. Lett. 95, 168301, (2005).
    [5] L. Forest, Europhys. Lett. 71, 508, (2005).
    [6] K. Simons and E. Ikonon, Nature, 387, 569, (1997).
    [7] E. Sparr, Langmuir 15, 6950, (1999).
    [8] H.Y. Chen, Phys. Rev. Lett. 92, 16, (2004).
    [9] T.R. Weikl, Phys. Rev. E 66, 061915, (2002).
    [10] M.C. Sabra and O.G. Mouritsen, Biophys. J. 74, 745, (1998).
    [11] H. Strey, M. Peterson, and E. Sackmann, Biophys. J. 69, 478, (1995).
    [12] Needham. D. and R. M. Hochmuth, Biophys. J. 61, 1664, (1992).
    48
    [13] K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics.
    2nd corrected ed. (Springer-Verlag, Berlin, 1992).
    [14] W.R. Gibbs, Computaion in Modern Physics. (World Scientific, Singapore,
    1994).
    [15] T.R. Weikl and R. Lipowsky, Biophys. J. 87, 3665, (2004).
    [16] M. Seul, N. Y. Morgan, and C. Sire, Phys. Rev. Lett. 73, 2284, (1994).
    [17] A. J. Bray, Adv. Phys. 43, 357, (1994).
    [18] L. C. -L Lin and F. L. H. Brown, Biophys. J. 86, 764, (2004).
    [19] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics. (Clarendon Press,
    Oxford, 1993).
    [20] H-G D¨obereiner, E. Evanc, U. Seifert, and M. Wartis, Phys. Rev. Lett. 75, 3360,
    (1995).

    QR CODE
    :::