跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韋儒
Wei-Ru Chen
論文名稱: Copula-based Markov chain model with binomial data
指導教授: 江村剛志
Takeshi Emura
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 70
中文關鍵詞: 控製圖,Clayton copula,馬爾可夫鏈,二項式AR(1)模型
外文關鍵詞: control chart, Clayton copula, Markov chain, Binomial AR(1) model
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業和金融業中,統計過程控制(SPC)是一項重要工具,一般而言,常用SPC,例如:休哈特控製圖,位於獨立樣本下。但是,樣本可能依賴於許多工業和金融應用,標準的休哈特控製圖是不合適的。 在這方面很多人應用基於copula的Markov模型在正常邊際分佈下執行SPC。在本文中,我們考慮具有二項邊際分佈的基於copula的馬爾可夫鏈模型來執行SPC。我們應用牛頓算法來獲得最大似然估計。區間估計是通過漸近理論得到的。我們還開發了獲得控制限值估計的方法,並提出了計算所提出的控製圖的平均運行長度(ARL)的模擬技術。我們使用模擬來檢查所提出的估計量的準確性。我們將我們的方法應用於韓國股市數據,並將我們的模型與二項式AR(1)進行比較。


    Walter Shewhart provided an important tool for statistical process control (SPC), called the Shewhart control chart (Shewhart 1931) under independent samples. However, samples may be dependent in many industrial and financial applications, and the standard Shewhart control chart is not appropriate. Long and Emura (2014) applied the copula-based Markov model to perform SPC under the normal marginal distribution. In this thesis, we consider the copula-based Markov chain model with the binomial marginal distribution to perform SPC. We apply the Newton-Raphson algorithm to obtain maximum likelihood estimates. Interval estimates are obtained by the asymptotic theory. We also develop methods to obtain the estimates of control limits and propose simulation techniques to compute the average run length (ARL) of the proposed control chart. We use simulations to check the accuracy of the proposed estimator. We apply our method to the Korean stock market data, and we compare our model with the binomial AR(1).

    Contents Chapter 1 Introduction…………..………………………………………………………………....1 Chapter 2 Models for serial dependent.……….……………………………………………….….2 2.1 Copula-based Markov chain model………………………………...…………….…….2 2.2 Binomial margin….……………………………………………………………3 2.3 The binomial First-order autoregressive model………………………………………5 Chapter 3 Estimation procedures…………………………………………………………9 3.1. Proposed method………………………………………………………………………...9 3.2 Other methods………………………………………………………………………….12 3.2.1 Chen and Fan’s method……………………………………………………………….12 3.2.2 Standard method……………………………………………………………………….13 3.2.3.1 Method based on binomial AR(1)…………………………………………………….14 Chapter 4 Interval estimation…….…………………………………….………………………...15 4.1 Clayton copula model…………………………………………………………….…15 4.2 Binomial AR(1) model………………….………………..…………..…………………17 Chapter 5 Average run length…………………………………………………………………….18 5.1 Definition ARL……………………………………………………………………….18 5.2 Calculation of ARL………………………………………………………………………..19 Chapter 6 Simulation…………………………………………………………………………...20 6.1. Simulation methods……………………………………………………………………..20 6.2. Simulation results for parameters…………………………………………………......21 6.3. Simulation results for ARL…….…………………………………………………......34 Chapter 7 Data Analysis………………………………………………………………………...35 Chapter 8 Conclusion and Discussion………………………………………………………...40 Appendix A…………………………………………………………………………………………42 Appendix B…………………………………………………………………………………………53 References…………………………………………………………………………………………..59

    References
    Bagshow M., Johnson RA (1975) The effect of serial correlation on the performance of Cusum tests II. Technometrics, 17(1): 73-80.
    Billingsley P (1961) Statistical inference for Markov processes. Univ of Chicago Press, Chicago.
    Chen X, Fan Y (2006) Estimation of copula-based semiparametric time series models. J Econom, 130(2): 307-335.
    Chien-Shang L (2017) The analysis of log returns using copula-based Markov models. Statistics, National Central University.
    Darsow WF, Nguyen B, Olsen ET (1992) Copulas and markov processes. Illinois J Math, 36(4): 600-642.
    Dobric J, Schmid F (2007) A goodness of fit test for copulas based on rosenblatt’s transformation. Comput Stat Data Anal, 51(9): 4633-4642.
    Efron B (1979) Bootstrap methods another look at the jackknife. Ann Statist, 7(1): 1–26.
    Emura T, Chen YH (2018), Analysis of survival data with dependent censoring, copula-based approaches, JSS Research Series in Statistics, Springer, Singapore.
    Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for archimedean copula models in the presence of right censoring. Comput Stat Data Anal, 54(12): 3033-3043.
    Emura T, Long TH, Sun LH (2017) R routines for performing estimation and statistical process control under copula-based time series models. Commun Stat Simul, 46(4): 3067-3087.
    Emura T, Konno Y (2012) A goodness-of-fit tests for parametric models based on dependently truncated data. Comput Stat Data Anal, 56(7): 2237-2250.
    Genest, C, Remillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing
    in semiparametric models. Ann Probab, 44(6): 1096-1127.
    Emura T, Ho YT (2016) A decision theoretic approach to change point estimation for binomial CUSUM control charts, Sequential Anal 35 (2): 238-53
    Hryniewicz O (2012) On the robustness of the shewhart control chart to different types of dependencies in data. Front Stat Qual Control, 10: 19-33.
    Hung YC, Tseng NF (2012) Extracting informative variables in the validation of two-group causal relationship. Comput Stat, 28(3): 1151-1167.
    Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, New York.
    Johnson RA, Bagshaw M (1974) The effect of serial correlation on the performance of Cusum tests. Technometrics, 16(1): 103-112.
    Kojadinovic I, Yan J, Holmes M (2011) Fast large-sample goodness-of-fit tests for copulas. Statistica Sinica, 21(2): 841-871.
    Kramer HG, Schmid W (2000) The influence of parameter estimation on the ARL of Shewhart type charts for time series. Stat Pap 41: 173-196.
    Kim JM, Baik J (2018) Change point detection by copula conditional distributions. manuscript, USA.
    Kim JM, Baik J (2018), Anomaly detection in sensor data. J Appl Reliab 18(1): 20-32.
    Kim JM, Baik J, Reller M (2018) Detecting the change of variance by using conditional distribution with diverse copula functions. In proceedings of the pacific rim statistical conference for production engineering (pp. 145-154). Springer, Singapore.
    Kim JM, Huang SY (2018) The copula directional dependence by stochastic volatility models. Commun Stat-Simul, DOI:10.1080/03610918.2017.1406512.
    Knight K (2000) Mathematical statistics. Chapman and Hall, New York.
    Knoth S, Schmid W (2004) Control charts for time series: a review. Front Stat Qual Control, 7: 210-236.
    Long TH, Emura T (2014) A control chart using copula-based Markov chain models. J Chinese Stat Assoc, 52(4): 466-496.
    MacDonald L (2014) Does Newton−Raphson really fail. Stat Methods Med Res, 23(3):308-311.
    Marius H, Martin M, McNeil AJ(2012) Likelihood inference for Archimedean copulas in high dimensions under known margins. J Multivar Anal , 110: 133-150.
    McKenzie E (1985) Some simple models for discrete variate time series. Water Resour Bull, 21(4): 645–650.
    Montgomery DC (2009) Introduction to statistical quality control, sixth edition. Wiley, USA.
    Nelsen RB (2006) An Introduction to copulas, second edition. Springer, New York.
    Ross SM (2006) Simulation. Elsevier, Academic Press.
    Schmid W (1995) On the run length of a Shewhart chart for correlated data. Stat Pap, 36(1): 111-130.
    Shewhart WA (1931) Economic control of quality of manufactured product. Macmillan, New York.
    Sklar A (1959) Fonctions de Re'partition a' n Dimensions et Leurs Marges. Inst Stat Univ Paris, 8: 229-231.
    Steutel FW, Harn KV (1979) Discrete analogues of self-decomposability and stability. Ann Probab, 7(5): 893–899.
    Stute W (1993) Bootstrap based goodness-of-fit test. Metrika, 40(1): 243-256.
    WeiB CH, Kim HY (2012) Binomial AR(1) processes: moments, cumulants, and estimation. Stat Pap, 47(3): 494-510.
    WeiB CH, Kim HY (2013) Parameter estimation for binomial AR(1) models with applications in finance and industry. Stat Pap, 54(3): 563-590.

    QR CODE
    :::