跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥鈞
Yen-Chun Chen
論文名稱: Copula連結之天氣資料預測
Copula-Based Weather Data Forecasting
指導教授: 鄧惠文
Huei-Wen Teng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 100
語文別: 英文
論文頁數: 49
中文關鍵詞: 預測nested archimedean copulaGARCH
外文關鍵詞: forecasting, GARCH, nested archimedean copula
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氣候衍生型商品快速的發展,每日平均天氣模型被廣泛的研究與討論。 Campbell and Diebold (2005) 利用包含季節性變動的GARCH模型來配適美國城市的天氣。 我們用不同的copula 做連結並應用在亞洲城市上來描述城市之間的天氣的相關性。 在本篇論文中,我們透過模擬去論證我們的預測方法以及亞洲城市的每日平均資料去做實例分析。


    Because of the rapid development of weather derivatives, models for daily average temperature have been extensively studied in the literature. citet{dat} provide a time series model with a GARCH model for the volatility to describe the features for modelling daily average temperature in U.S. cities. Motivated by Campbell and Diebold (2005), we apply this model in Asian cities and use trivariate fully nested Archimedean Gumbel and Clayton copula to describe the dependence structure for the error distribution.
    To show the superiority of our model, we construct the prediction interval for the one-year ahead daily average temperature data using eight-year historical data, and show the coverage rates are higher when the dependence structure is employed.

    1.Introduction 1 2.Preliminary 3 3.Simulation studies 11 4.Real data analysis 25 5.Conclusion 35

    Alaton, P., B. Djehiche, and D. Stillberger (2002). On modelling and pricing weather
    derivatives. Applied Mathematical Finance 9, 1–20.
    Benth, F. E. and J. ˆSaltyt˙e Benth (2005a). Stochastic modelling of temperature variations
    with a view towards weather derivatives. Applied Mathathematical Finance 12, 53–85.
    Benth, F. E. and J. ˆSaltyt˙e Benth (2005b). The volatility of temperature and pricing of
    weather derivatives. Pure Mathematics, Preprint, Department of Mathematics, Univerity
    of Oslo.
    Campbell, S. and F. Diebold (2005). Weather forecasting for weather derivatives. Journal
    of American Statistical Association 100, 6–16.
    Caporin, M. and J. Pre’s (2009). Forecasting temperature indices with time-varying longmemory
    models. Marco Fanno working paper N.88, 1–58.
    Engle, R. (2002). Dynamic conditional correlation: a simple class of multivariate generalized
    autoregressive conditional heteroskedasticity models. Journal of Business and
    Economic Statistics 20, 339–350.
    Engle, R. and K. Kroner (1995). Multivariate simultaneous generalized ARCH. Econometric
    Theory 11, 122–50.
    H‥ardle, W. K. and B. L’opez-Cabrera (2009). Implied market price of weather risk (2009-
    001). SFB 649, Humboldt-Universit‥at zu Berlin Spandauer.
    Lee, T.-H. and X. Long (2009). Copula-based multivariate GARCH model with uncorrelated
    dependent errors. Journal of Econometrics 150, 207–218.
    Luca, G. D. and G. Rivieccio (2008). Measuring tail dependence with a Copula-GARCH
    model. Department of Statistics and Mathematics for Economic Research, University
    of Napoli Parthenope, via Medina 40, 80133 Napoli, Italy.
    Makridakis, S., S. C. Wheelwright, and R. J. Hyndman. (1998). Forecasting:methods and
    applications. New York: John Wiley & Sons.
    McNeil, A. J. (2008). Sampling nested Archimedean copulas. Journal of Statistical
    Computation and Simulation 78, 567–581.
    Mraova, M. and D. Bari (2007). Temperature stochastic modelling and weather deriatives
    pricing: empirical study with moroccan data. Afrika Statistika 2, 22–43.
    Okhrin, O., Y. Okhrin, and W. Schmid (2009). Properties of Hierarchical Archimedean
    copulas (2009-014). SFB 649, Humboldt-Universit‥at zu Berlin.
    Patton, A. J. (2011). Copula methods for forecasting multivariate time series. Handbook
    of Economic Forecasting Vol. 2 Elsevier, Oxford.
    Pellegrini, S., E. Ruiz, and A. Espasa (2011). Prediction intervals in conditionally heteroscedastic
    time series with stochastic components. International Institute of Forecasters
    27, 308–319.
    Shumway, R. H. and D. S. Stoffer (2006). Time Series Analysis and Its Applications :
    With R Examples. New York: Springer.
    Sklar, A. (1959). Fonctions de r’epartition `an dimensions et leurs marges. Publications de
    Institut Statistique de Universite de Paris 8, 229–231.
    Tse, Y. and A. Tsui (2002). A multivariate generalized autoregressive conditional heteroscedasticity
    model with time-varying correlations. Journal of Business and Economic
    Statistics 20, 351–362.

    QR CODE
    :::