| 研究生: |
范文翔 Wen-Hsiang Fan |
|---|---|
| 論文名稱: |
一個估計資料群數的新方法 A new method for estimating the number of clusters |
| 指導教授: |
銀慶剛
Ching-Kang Ing |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | K平均值分群演算法 、訊息準則 |
| 外文關鍵詞: | Information criterion, K-means clustering algorithm |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
估計資料群數是群集分析(cluster analysis)中一個重要的問題。在本篇論文中,我們嘗試模型選取中最被普遍使用的貝氏訊息準則(Bayesian information criterion)做為群集問題中選取群數的標準。然而,在資料變數為一維的情況下,我們發現使用BIC會高估資料的真實群數;即使嘗試各種不同的懲罰項,並沒有找到一個有效的一致性訊息準則(consistent information criterion)。因此,本篇論文提出了一個群數估計的新方法,並經由程式模擬說明其估計資料群數的準確性。
A major problem in cluster analysis is to find the number of clusters. In this paper, we try to use Bayesian information criterion(BIC), a wide-used criterion in model selection problem, as a criterion to estimate the number of clusters. However, we found that the ture number of clusters would be overestimated when using BIC as a criterion in one dimension case. We can not find a consistent information criterion in the problem of number estimation. We propose a new method for estimating the number of clusters and show the currency of the method via simulation study.
[1] Calinski, R. B. and Harabasz, J. A.(1974). A denrite method for cluster analysis. Communications in Statistics 3, 1-27.
[2] Hartigan, J. A.(1975). Clustering Algorithms. Wiley.
[3] Kaufman, L. and Rousseeuw, P.(1990). Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley.
[4] Krzanowski, W. J. and Lai, Y. T.(1985). A criterion for determining the number of clusters in a data set. Biometrics 44, 23-34.
[5] Milligan, G. W. and Cooper, M. C.(1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika 50, 159-179
[6] Sugar, Catherine A. and James, Gareth M.(2003). Finding the number of clusters in a data set: An information theoretic approach. Journal of the American Statistical Association 98, 750-763.
[7] Tibshirani, R., Walther, G., and Hastie, T.(2001). Estimating the number of clusters in a data set via the gap statistics. Journal of the Royal Statistical Society, Series B 63, 411-423.