跳到主要內容

簡易檢索 / 詳目顯示

研究生: 唐瓊青
Duong Quynh Thanh
論文名稱: 潮汐變動引致海淡水交互作用之數值模擬-以桃園TaiCOAST場址為例
Numerical modeling of fresh-seawater interaction induced by tidal variation, a case study at NCU TaiCOAST site in Taoyuan, Taiwan
指導教授: 倪春發
Chuen-Fa Ni
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 107
中文關鍵詞: 數值模式過渡地帶潮汐震盪SEAWAT
外文關鍵詞: numerical model, transition zone, tidal variation, SEAWAT
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海淡水在沿海含水層的交互作用主要為由潮汐震盪、波浪與海淡水間密度差所引 起的自然現象。在複雜水文地質作用的影響下,沿海含水層的海淡水交互作用便成為 了水文循環中的一個顯著的部分。本研究利用在潮汐作用下,海淡水交界間過渡地帶 的時空分布的模擬來確認海淡水間的交互作用特性。為了達到此目的,本研究採用現 地調查與二維 SEAWAT 數值模式兩種工具,以進行桃園沿岸系統的地下水流場與溶質 傳輸的研究。此外,本研究亦利用時序分析辨別本含水層系統在潮汐影響下的反應特 性,並將其結果用來率定數值模擬結果。根據時序分析結果,本研究場址的地下水流 特性與潮汐息息相關,潮汐在本地的影響距離甚至能達到離岸約 400 公尺的地方。多點 觀測結果顯示潮汐造成研究區域內地下水的週期性震盪,頻率分析結果顯示該震盪的 振幅會隨著離岸距離的增加而指數下降,相位延遲則隨著離岸距離而有線性上升的現 象。
    數值模擬方面,除證實了本研究所建立模型與現地觀測互相吻和外,本研究亦發 現由於本地複雜的海灘地形,潮汐的震盪與地下水源對於過渡地帶的影響並不明顯, 降雨大小的變化亦只造成地下水位面的改變。本研究另外亦發現陸地的補注量與進入 海中的地下水量成正比關係。


    The interaction between seawater and freshwater is a natural process driven primarily by tidal oscillation, waves, and density variation between fresh groundwater and seawater in the coastal aquifer. Due to complex hydrogeology in the coastal aquifer, the dynamic of this interaction becomes a significant component of the hydrology cycle. Also, to determine the characteristics of the relationship between fresh groundwater and saltwater in this research, we aim to simulate the spatiotemporal of a transition zone between groundwater and seawater, induced by tidal fluctuation. Field investigations and SEAWAT two-dimensional numerical model were conducted to study groundwater flow and solute transport in the nearshore system located at the Taoyuan coast, the Northwest of Taiwan. Also, time series analysis is used to identify a characteristic of the aquifer system that responded to ocean tide. Then results are used to calibrate with the numerical simulation. According to the time series analysis results, the groundwater level fluctuates following the tidal period, and tidal effects on the groundwater level reached up to 400 m inland from the coast. Field observation at various locations showed that tide induced groundwater level changes periodically. Frequency analysis suggested that the fluctuation amplitudes decreased exponentially, and phase lag increased linearly for primary tidal signals as they propagated inland.
    Moreover, the simulation results indicated that simulated groundwater levels were in good agreement with the observed data. The effects of fluctuation driven by the ocean tide and inland heads on the transition zone were relatively slight due to complex beach morphology. Besides, the different amount of groundwater discharge is to considered as changing water table elevation. As a result, when the inland head increased, the groundwater discharge amount also increased compared to the base case. Otherwise, this amount was dropped in case of decreasing the head.

    ABSTRACT i 摘要 ii ACKNOWLEDGEMENTS . iii LIST OF CONTENTS iv LIST OF FIGURESviii LIST OF TABLES xi LIST OF ABBREVIATIONS..xiii LIST OF NOTATIONS .. xiv CHAPTER 1. INTRODUCTION .. 1 Background . 1 Motivation and objectives 4 Thesis structure . 7 CHAPTER 2. MATERIAL AND METHODOLOGY. 10 Study area .. 10 2.1.1. Geological background. 10 2.1.2. Hydrological feature .. 12 2.1.3. Data description 12 Field measurements.. 13 2.2.1. Groundwater level monitoring . 13 2.2.2. Salinity profile measurement. 15 2.2.3. Pumping test experiment . 15 Laboratory measurement 16 Algorithm of time series analysis.. 19 2.4.1. Autocorrelation analysis .. 19 2.4.2. Cross-correlation analysis .. 20 2.4.3. Frequency analysis . 21 Interpolating tidal harmonic constant . 21 Numerical model 24 2.6.1. SEAWAT model.. 25 2.6.2. Flow equation 25 2.6.3. Transport equation .. 26 Seepage face development condition..27 CHAPTER 3. MODEL SETUP AND PARAMETER . 28 Conceptual model.. 28 Input parameters and boundary conditions .. 28 3.2.1. Aquifer parameter28 3.2.2. Boundary condition 29 Model simulation .. 30 CHAPTER 4. RESULTS AND DISCUSSION 3 Tidal variation . 32 Groundwater level fluctuation 34 4.2.1. Groundwater level measurements on October 2019 . 34 4.2.2. Groundwater level measurements on May 2020 . 38 Salinity variation 40 4.3.1. Spatial salinity variation .. 40 4.3.2. Temporal salinity variation. 42 Water level variations with ocean tides . 44 4.4.1. Autocorrelation . 44 4.4.2. Cross-correlation . 47 4.4.3. Fast Fourier Transform (FFT) .. 50 4.4.4. Amplitude and phase variation of M2 along the cross-section 58 Field test and experiment test results .. 60 Results of simulation 63 4.6.1. Comparison of simulated and observed heads . 63 4.6.2. Flow field induced by the ocean tide. 66 4.6.3. Spatial and temporal variation in simulated salinity distribution. .. 70 4.6.4. The transition zone between freshwater and saltwater. 73 4.6.5. Fresh groundwater discharge. 76 Seepage face development condition..80 CHAPTER 5. CONCLUSION AND SUGGESTIONS .. 81 Conclusion. 81 Suggestions .. 82 REFERENCES.. 83

    Almedeij, J., & Fawzia Al-Ruwaih. (2006). Periodic behavior of groundwater level fluctuations in residential areas. Journal of Hydrology, 328(3–4), 677–684. https://doi.org/10.1016/j.jhydrol.2006.01.013
    Anderson, Mary P., Woessner, William W., & Hunt, R. J. (2015). Applied Groundwater Modeling. In Applied Groundwater Modeling. https://doi.org/10.1016/b978-0-08- 091638-5.00016-x
    Anwar, N., Robinson, C., & Barry, D. A. (2014). Influence of tide and wave on the fate of nutrients in a nearshore aquifer: numerical simulation. Advances in Water Resources, 733, 203–213.
    Ataie-Ashtiani, B., Volker, R. E., & Lockington, D. A. (1999). Tidal Effects on Sea Water Intrusion in Unconfined Aquifer. Journal of Hydrology, 216, 17–31.
    Ataie-Ashtiani, B., Volker, R. E., & Lockington, D. A. (2001). Tidal effects on groundwater dynamics in unconfined aquifers. Hydrological Processes, 15(4), 655–669. https://doi.org/10.1002/hyp.183
    Bear, J. (2007). Hydraulic of Groundwater (Dover).
    Bear, J., Cheng, A. H.-D., Sorek, S., Driss, O., & Herrera, I. (1999). Seawater intrusion in coastal aquifer: Concepts, Method and practices. https://doi.org/10.1007/978- 94-017-2969-7
    Bokuniewicz, H. (1980). Groundwater seepage into Great South Bay, New York. Estuarine Coastal and Shelf Science, 10, 437–444.
    Cable, J. E., Burnett, W. C., & Chanton, J. P. (1997). Magnitude and variations of groundwater seepage along a Florida marine shoreline. Biogeochemistry, 38 (2), 189–205.
    Chen, Y, G., & Liu, T, K. (1991). Radiocarbon dates of river terraces along the lower Tahachi, Northern Taiwan: their tectonic and geomorphic implications. Proc. Geol. Soc. China, 34, 337–347.
    Chingchang, B., Chen, J, C., & Boggs Sam, J. (1985). Taiwan: Geology, Geophysics, and Marine Sediments. In The Ocean Basins and Margins (pp. 503–549).
    Chung, S. Y., Senapathi, V., Sekar, S., & Kim, T. H. (2018). Time series analyses of hydrological parameter variations and their correlations at a coastal area in Busan, South Korea. Hydrogeology Journal, 26(6), 1875–1885. https://doi.org/10.1007/s10040-018-1739-9
    De Filippis, G., Foglia, L., Giudici, M., Mehl, S., Margiotta, S., & Negri, S. L. (2017). Effects of different boundary conditions on the simulation of groundwater flow in a multi-layered coastal aquifer system (Taranto Gulf, southern Italy). Hydrogeology Journal, 25(7), 2123–2138. https://doi.org/10.1007/s10040-017-1589-x
    Diersch, H. J. G., & Kolditz, O. (2002). Variable-density flow and transport in porous media: Approaches and challenges. Advances in Water Resources, 25(8–12), 899– 944. https://doi.org/10.1016/S0309-1708(02)00063-5
    Dogan, A., & Fares, A. (2008). Effects of land-use changes and groundwater pumping on saltwater intrusion in coastal watersheds. In Coastal Watershed Management (Vol. 33). https://doi.org/10.2495/978-1-84564-091-0/08
    Evans, T. B., & Wilson, A. M. (2016). Groundwater transport and the freshwater- saltwater interface below sandy beaches. Journal of Hydrology, 538, 563–573. https://doi.org/10.1016/j.jhydrol.2016.04.014
    Fuentes-Arreazola, M. A., Ramírez-Hernández, J., & Vázquez-González, R. (2018). Hydrogeological properties estimation from groundwater level natural fluctuations analysis as a low-cost tool for the Mexicali Valley Aquifer. Water (Switzerland), 10(5). https://doi.org/10.3390/w10050586
    Genevieve Segol. (1993). Salt-water intrusion. In Classic groundwater simulations: proving and improving numerical models (pp. 191–282).
    Geng, X., Boufadel, M. C., & Jackson, N. L. (2016). Evidence of salt accumulation in beach intertidal zone due to evaporation. Scientific Reports, 6(March), 1–5. https://doi.org/10.1038/srep31486
    Greskowiak, J. (2014). Tide-induced salt-fingering flow during submarine groundwater discharge. Geophys. Res. Lett, 41 (18), 6413–6419. Retrieved from https://doi.org/10.1002/2014GL061184
    Guo, Q., Huang, J., Zhou, Z., & Wang, J. (2019). Experiment and numerical simulation of seawater intrusion under the influences of tidal fluctuation and groundwater exploitation in coastal multilayered aquifers. Geofluids, 2019, 12–15. https://doi.org/10.1155/2019/2316271
    Heiss, J. W., & Michael, H. A. (1985). Saltwater-freshwater mixing dynamics in a sandy beach aquifer over tidal, spring-neap, and seasonal cycles. 6747–6766. https://doi.org/10.1002/2014WR015574.Received
    Henry, H. R. (1959). Salt intrusion into freshwater aquifers. J. Geophys.Res., 64, 1911– 1919.
    Huang, Z. Y., & Yu, H. S. (2003). Morphology and geologic implications of Penghu Channel off south-west Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 14(4), 469–485. https://doi.org/10.3319/TAO.2003.14.4.469(O)
    Hyun, S. G., Woo, N. C., Kim, K. Y., & Lee, H. A. (2013). Factors of groundwater fluctuation in Shin Kori nuclear power plants in Korea. Nuclear Engineering and Technology, 45(4), 539–552. https://doi.org/10.5516/NET.09.2012.072
    Jan, S., Wang, Y. H., Wang, D. P., & Chao, S. Y. (2004). Incremental inference of boundary forcing for a three-dimensional tidal model: Tides in the Taiwan Strait. Continental Shelf Research, 24(3), 337–351. https://doi.org/10.1016/j.csr.2003.11.005
    Kim, J. H., Lee, J., Cheong, T. J., Kim, R. H., Koh, D. C., Ryu, J. S., & Chang, H. W. (2005). Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. Journal of Hydrology, 300(1–4), 188–198. https://doi.org/10.1016/j.jhydrol.2004.06.004
    Kim, K. Y., Seong, H., Kim, T., Park, K. H., Woo, N. C., Park, Y. S., ... Park, W. B. (2006). Tidal effects on variations of fresh-saltwater interface and groundwater flow in a multilayered coastal aquifer on a volcanic island (Jeju Island, Korea). Journal of Hydrology, 330(3–4), 525–542. https://doi.org/10.1016/j.jhydrol.2006.04.022
    Kresic, N. (2006). Laboratory Methods for Determining Hydraulic Conductivity. In Hydrogeology and Groundwater Modeling (2nd ed., pp. 557–570). https://doi.org/10.1201/9781420004991
    Kuan, W. K., Jin, G., Xin, P., Robinson, C., Gibbes, B., & Li, L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48(2), 1–11. https://doi.org/10.1029/2011WR010678
    Langevin, C. D. (2009). SEAWAT: a computer program for simulation of variable density groundwater flow and multi-species solute and heat transport. U.S Geological Survey Fact Sheet, 2009–3047, 2p.
    Lanyon, J. A., Eliot, I. G., & Clarke, D. J. (1982). Groundwater-Level Variation During Semidiurnal Spring Tidal Cycles on a Sandy Beach. Marine and Freshwater Research, 33(3), 377–400. https://doi.org/10.1071/MF9820377
    Levanon, E., Yechieli, Y., Gvirtzman, H., & Shalev, E. (2017). Tide-induced fluctuations of salinity and groundwater level in unconfined aquifers – Field measurements and numerical model. Journal of Hydrology, 551, 665–675. https://doi.org/10.1016/j.jhydrol.2016.12.045
    Levanon, E., Yechieli, Y., Shalev, E., Friedman, V., & Gvirtzman, H. (2013). Reliable monitoring of the transition zone between fresh and saline waters in coastal aquifers. Groundwater Monitoring and Remediation, 33(3), 101–110. https://doi.org/10.1111/gwmr.12020
    Levanon Elad, Eyal, S., Yoseph, Y., & Haim, G. (2016). Fluctuations of fresh-saline water interface and of water table induced by sea tides in unconfined aquifers. Advances in Water Resources. https://doi.org/10.1016/j.advwatres.2016.06.013
    Li, H., Boufadel, M. C., & Weaver, J. W. (2008). Tide-induced seawater-groundwater circulation in shallow beach aquifers. Journal of Hydrology, 352(1–2), 211–224. https://doi.org/10.1016/j.jhydrol.2008.01.013
    Li, H., & Jiao, J. J. (2003). Tide-induced seawater-groundwater circulation in a multi- layered coastal leaky aquifer system. Journal of Hydrology, 274(1–4), 211–224. https://doi.org/10.1016/S002-1694(02)00413-4
    Li, L., Barry, D. A., Cunningham, C., Stagnitti, F., & Parlange, J.-Y. (2000). A two- dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Advances in Water Resources, 23, 825–833.
    Li, W. C., Ni, C. F., Tsai, C. H., & Wei, Y. M. (2016). Effects of hydrogeological properties on sea-derived benzene transport in unconfined coastal aquifers. Environmental Monitoring and Assessment, 188(5). https://doi.org/10.1007/s10661-016-5307-2
    Lin, C. C. (1963). Geology and Ecology of Taiwan Prehistory. University of Hawai’i Press. Retrieved from https://scholarspace.manoa.hawaii.edu/bitstream/10125/16725/1/AP-v7n1-2-203- 213.pdf
    Lin, M.-C., Juang, W.-J., & Tsay, T.-K. (2000). Applications of Mild-slope equation to tidal computations in the Taiwan Strait. Journal of Oceanography, 56, 625–642.
    Lin, Y.-S., Yi-Wen, L., Yu Wang, Yue-Gau, C., Mei-Ling, H., Shou-Hao, C., & Zueng- Sang, C. (2007). Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan-Hukou Tableland, Northwestern Taiwan. Geomorphology, 90, 36–54.
    Lin, Y. S., Chen, Y. G., Chen, Z. S., & Hsieh, M. L. (2005). Soil morphological variations on the Taoyuan Terrace, Northwestern Taiwan: Roles of topography and groundwater. Geomorphology, 69(1–4), 138–151. https://doi.org/10.1016/j.geomorph.2004.12.006
    Liu, T. (2012). Human Activities and Environmental Changes along Taiwan ’ s West Coast. 29(29), 1–32.
    Ma, Q., Li, H., Wang, X., Wang, C., Wang, L., Wang, X., & Jiang, X. (2015). Estimation of seawater-groundwater echange rate: case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China). Hydrogeology Journal, 23, 265–275.
    Mao, X., Enot, P., Barry, D. A., Li, L., Binley, A., & Jeng, D. S. (2006). Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. Journal of Hydrology, 327(1–2), 110–127. https://doi.org/10.1016/j.jhydrol.2005.11.030
    Michael, H. A., Mulligan, A. E., & Harvey, C. F. (2005). Seasonal Oscillations in Water Exchange Between Aquifers and the Coastal Ocean. Nature, 436, 1145–1148.
    Naus, F. L., Schot, P., Ahmed, K. M., & Griffioen, J. (2019). Influence of landscape features on the large variation of shallow groundwater salinity in southwestern Bangladesh. Journal of Hydrology X, 5(October). https://doi.org/10.1016/j.hydroa.2019.100043
    Neuman, S. P. (1974). Effect of partial penetration on flow in unconfined aquifer considering delayed gravity response. Water Resources Management, 10(2), 329– 342.
    Oberle, F. K. J., Swarzenski, P. W., & Storlazzi, C. D. (2017). Atoll groundwater movement and its response to climatic and sea-level fluctuations. Water (Switzerland), 9(9). https://doi.org/10.3390/w9090650
    Opatz, C. C., & Dinicola. (2018). Analysis of Groundwater Response to Tidal Fluctuations, Operable Unit 2, Area 8, Naval Base Kitsap, Keyport, Washington. U.S. Geological Survey Open-File Report 2018-1082, 20p. https://doi.org/https://doi.org/10.3133/ofr20181082.
    Pool, M., Post, V. E. A., & Simmons, C. T. (2015). Effects of tidal fluctuations and spatial heterogeneity on mixing and spreading in spatially heterogeneous coastal aquifers. Water Resources Research, 51(3), 1570–1585. https://doi.org/10.1002/2014WR016068

    Qi, P., Zhang, G., Xu, Y. J., Wang, L., Ding, C., & Cheng, C. (2018). Assessing the influence of precipitation on shallow groundwater table response using a combination of singular value decomposition and cross-wavelet approaches. Water (Switzerland), 10(5). https://doi.org/10.3390/w10050598
    Ratner-Narovlansky, Y., Weinstein, Y., & Yechieli, Y. (2020). Tidal fluctuations in a multi-unit coastal aquifer. Journal of Hydrology, 580(September 2019), 124222. https://doi.org/10.1016/j.jhydrol.2019.124222
    Renslow, G. (2003). Is Seawater Intrusion Affecting Groundwater on Lopez Island, Washington? In 057-00, U.S Geological Survey Fact Sheet.
    Robinson, C., Li, L., & Barry, D. A. (2007). Effect of tidal forcing on a subterranean estuary. Advances in Water Resources, 30(4), 851–865. https://doi.org/10.1016/j.advwatres.2006.07.006
    Robinson, C., Li, L., & Prommer, H. (2007). Tide-induced recirculation across the aquifer-ocean interface. Water Resources Research, 43(7). https://doi.org/10.1029/2006WR005679
    Shih, D. C. F., Lee, C. D., Chiou, K. F., & Tsai, S. M. (2000). Spectral analysis of tidal fluctuations in ground water level. Journal of the American Water Resources Association, 36(5), 1087–1099. https://doi.org/10.1111/j.1752- 1688.2000.tb05712.x
    Singaraja, C., Chidambaram, S., & Jacob, N. (2018). A study on the influence of tides on the water table conditions of the shallow coastal aquifers. Applied Water Science, 8(1), 1–13. https://doi.org/10.1007/s13201-018-0654-5
    Slomp, C., & Van Capellen, P. (2004). Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology, 295, 64–86.
    Su, Q., Xu, X., Fu, T., Liu, W., & Chen, G. (2018). Tidal effects on groundwater level in coastal region under human disturbance. Indian Journal of Geo-Marine Sciences, 47(11), 2278–2286.
    Taniguchi, M. (2002). Tidal effects on submarine groundwater discharge into the ocean. Geophys. Res. Lett, 29(12), 1551. https://doi.org/doi:10.1029/ 2002GL014987
    Taniguchi, M., Ishitobi, T., & Shimada, J. (2006). Dynamics of submarine groundwater discharge and freshwater-seawater interface. J. Geophys. Res, 111(C01008). https://doi.org/10.1029/2005JC002924
    Todd, D. K., & W.Mays, L. (2005). Groundwater Hydrogeology. In John Wiley & Sons, Inc. (Vol. 14, pp. 589–611). https://doi.org/10.1167/iovs.15-17248
    Tularam, G. A., & Keeler, H. P. (2006). The study of coastal groundwater depth and salinity variation using time-series analysis. Environmental Impact Assessment Review, 26(7), 633–642. https://doi.org/10.1016/j.eiar.2006.06.003
    Turner, I. (1995). Simulating the influence of groundwater seepage on sediment transported by sweep of swash zone across macro tidal beaches. Marine Geology, 125, 153–174.

    Wang, J., & Tsay, T. K. (2001). Tidel effects on groundwater motions. Transport in Porous Media, 43(1), 159–178. https://doi.org/10.1023/A:1010634114160
    Wang, Y., Chen, Y., Shyu, J., Chuang, R., Lin, Y., & Chung, L. (2002). The active tectonic features in Taoyuan Area, Northwestern Taiwan. AGU 2002 Fall Meeting, T62D-10.
    Werner, A. D., Bakker, M., Post, Vincent E, A., Vandenbohede, A., Lu, C., Ataie- Ashtiani, B., Simmons, Craig T., Barry, D, A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3–26. https://doi.org/10.1016/j.advwatres.2012.03.004
    White, J. K., Mary, Q., & Roberts, T. O. L. (1994). The significance of groundwater tidal fluctuations. 31–42.
    Xia, Y., Li, H., Boufadel, M. C., Guo, Q., & Li, G. (2007). Tidal wave propagation in a coastal aquifer: Effects of leakages through its submarine outlet-capping and offshore roof. Journal of Hydrology, 337(3–4), 249–257. https://doi.org/10.1016/j.jhydrol.2007.01.036
    Xu, Zhigang. (2018). A note on interpreting tidal harmonic constants. Ocean Dynamics, 68(2), 211–222. https://doi.org/10.1007/s10236-017-1122-8
    Xu, Zhongyuan, Hu, B. X., Xu, Z., & Wu, X. (2019). Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in Woodville Karst Plain. Journal of Hydrology, 579(October), 124171. https://doi.org/10.1016/j.jhydrol.2019.124171
    Xun, Z., Chuanxia, R., Yanyan, Y., Bin, F., & Yecheng, O. (2006). Tidal effects of groundwater levels in the coastal aquifers near Beihai, China. Environmental Geology, 51(4), 517–525. https://doi.org/10.1007/s00254-006-0348-4
    Zang, Y. G., Sun, D. M., & Feng, P. (2019). Numerical Study of Tide-Induced Airflow and Salt–Fresh Water Dynamics in Unconfined Aquifers. Groundwater. https://doi.org/10.1111/gwat.12921
    Zhang, Y., Li, L., V.Erler, D., Santos, I., & Lockington, D. (2016). Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer. Journal of the American Water Resources Association, 5(3), 991–1008. https://doi.org/10.1111/j.1752-1688.1969.tb04897.x
    Zhao, J., Lin, J., Wu, J., Yang, Y., & Wu, J. (2016). Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in northern China. Environmental Earth Sciences, 75(9), 1–18. https://doi.org/10.1007/s12665-016-5606-5
    Zhou, P., Li, G., & Lu, Y. (2016). Numerical modeling of tidal effects on groundwater dynamics in a multi-layered estuary aquifer system using equivalent tidal loading boundary condition: case study in Zhanjiang, China. Environmental Earth Sciences, 75(2), 1–16. https://doi.org/10.1007/s12665-015-5034-y

    QR CODE
    :::