| 研究生: |
黃映祥 Ying-Hsiang Huang |
|---|---|
| 論文名稱: |
具高速相位選擇器之六十億赫茲全數位式展頻時脈產生器 A 6 GHz All-digital Spread-spectrum Clock Generator with High Speed Phase Selector |
| 指導教授: | 鄭國興 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 全數位式 、全數位式展頻時脈產生器 、混亂波調變 、全數位式鎖相迴路 、高速相位選擇器 |
| 外文關鍵詞: | Chaotic Wave, All-digital Phase-locked Loop, High Speed Clock Generator, ADSSCG |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文提出一個操作在6 GHz、擁有10個相位輸出全數位式展頻時脈產生器。在此設計中,本設計使用含有次回授迴圈之多重相位數位控制震盪器,因此可在相位多的情況下仍能有高頻率輸出。提出一個高速相位選擇器可以在6 GHz操作速度下做多相位的切換,相位選擇器中的相位選擇單元可以限制各節點所看到的負載,因此操作速度不受相位個數所影響。使用混亂波做為展頻機制的調變波型,藉以達到比其他種調變波型更多的電磁雜訊干擾衰減量。
本論文之全數位式展頻時脈產生器使用TSMC 90 nm MSG 1P9M CMOS製程實現晶片,其操作頻率為6 GHz,並且擁有10個相位的輸出。電路在操作電壓為1 V時,功率消耗為46 mW,而使用三角波調變的展頻機制對於電磁雜訊的衰減量為15.83 dB,使用混亂波調變的展頻機制對於電磁雜訊的衰減量為18.64 dB。整體晶片面積為830 × 830 um2,核心電路的面積為130 × 234 um2。
Abstract
A 6 GHz all-digital spread-spectrum clock generator with 10-phase output has been presented in this thesis. A multi-phase digitally-controlled oscillator with sub-feedback loop has been used in this design, as a result, this circuit can be operating at high frequency with many outputs. The proposed high speed phase selector can switch phase at 6 GHz operating frequency. The phase-selecting unit in the phase selector makes load of each nodes limited, therefore, the operating frequency isn't affected by the amount of phase. The chaotic modu- lation used in the spread-spectrum mechanism increases the more reduction of electromagne- tic interference with comparison to other modulations.
The proposed all-digital spread-spectrum clock generator has been fabricated in TSMC 90 nm MSG 1P9M CMOS process with 10-phase output at 6 GHz operating frequency. The power consumption is 46 mW under 1 V supply voltage. The reduction of electromagnetic interference are 15.83 dB with the spread-spectrum mechanism modulated by triangular wave and 18.64 dB with the spread-spectrum mechanism modulated by chaotic wave. The chip area is 830 × 830 um2. The core area is 130 × 234 um2.
參考文獻
[1] K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread Spectrum Clock Generation for the Reduction of Radiated Emissions,” in Proc. IEEE Int. Symp. Electromagn. Compat., 1994, pp. 227–231.
[2] C.-H. Wong and T.-C. Lee, “A 6-GHz Self-Oscillating Spread-Spectrum Clock Generator,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no.5,pp. 1264–1273, May 2013.
[3] D sheng, C.-C. Chung, and C.-Y. Li, “A Low-Power and Portable Spread Spectrum Clock Generator for SoC Applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 6, pp. 1113–1117, Jun. 2011.
[4] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz Serial ATA Spread-Spectrum Clock Generator Employing a Chaotic PAM Modulation,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 57, no. 10, pp. 2577–2587, Oct. 2010.
[5] S.-T. Lin and S.-I. Liu, “A 1.5 GHz All-Digital Spread Spectrum Clock Generator,” IEEE J. Solid-State Circuit, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[6] I-T. Lee, S.-H. Ku, and S.-I. Liu, “An All-Digital Spread-Spectrum Clock Generator With Self-Calibrated Bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no. 10, pp. 2813–2822, Nov. 2013.
[7] K.-H. Cheng, C.-L. Hung, and C.-H. Chang, “A 0.77 ps RMS jitter 6-GHz Spread-Spectrum Clock Generator Using a Compensated Phase-Rotating Technique,” IEEE J. Solid-State Circuit, vol. 46, no. 5, pp. 1198–1213, May. 2011.
[8] K.-H. Cheng, et al., “A Spread-Spectrum Clock Generator Using Fractional-N PLL Controlled Delta-Sigma Modulator for Serial-ATA III,” in Proc. IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Apr. 2008, pp. 1–4.
[9] D. D. Caro, et al., “A 1.27 GHz All-Digital Spread Spectrum Clock Generator/Synthesizer in 65 nm CMOS,” IEEE J. Solid-State Circuit, vol. 45, no. 5, pp. 1048–1060, Mar. 2010.
[10] S. Damphousse, et al., “All Digital Spread Spectrum Clock Generator for EMI Reduction,” IEEE J. Solid-State Circuit, vol. 42, no. 1, pp. 145–150, Jan. 2007.
[11] S. Hwang, et al., “A 3.5 GHz Spread-Spectrum Clock Generator With a Memoryless Newton-Raphson Modulation Profile,” IEEE J. Solid-State Circuit, vol. 47, no. 5, pp. 1199–1208, May 2012.
[12] C.-Y. Yang, C.-H. Chang, and W.-G. Wong, “A Δ-Σ PLL-Based Spread-Spectrum Clock Generator With a Ditherless fractional topology,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 56, no. 1, pp. 51–59, Jan. 2009.
[13] S. Hwang, M. Song, et al., “A 0.076mm2 3.5GHz Spread Spectrum Clock Generator with Memoryless Newton-Raphson Modulation profile in 0.13µm CMOS,” in IEEE Int. Solid-state Circuit Conf. Dig. Tech. Papers, Feb. 2011, pp. 360–362.
[14] D. Sheng, C.-C Chung, and C.-Y. Lee, “An All Digital Spread Spectrum Clock Generator with Programmable Spread Ratio for SoC Applications,” in Proc. IEEE Asia Pacific Conf. Circuits Syst., Nov. 2008, pp.850–853.
[15] H.-Y. Huang, and F.-C. Tsai, ‘‘Analysis and Optimization of Ring Oscillator Using Sub-Feedback Scheme,’’ in Proc. IEEE Int. Symp. Design and Diagnostics of Electronic Circuits and Systems, Apr. 2009, pp. 28–29.
[16] V. Kratyuk, ‘‘Digital phase-locked loops for multi-GHz clock generation,” OSU Ph. D. Thesis, Dec. 2006.
[17] J. Borremans, K. Vengattaramane, and V. Giannini, “A 86MHz-to-12GHz Digital- Intensive Phase-Modulated Fractional-N PLL Using a 15pJ/shot 5ps TDC in 40nm digital CMOS,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2010, pp. 480–481.
[18] Colin W.-Wu, et al., “A 3.5GHz Wideband ADPLL with Fractional Spur Suppression Through TDC Dithering and Feedforward Compensation,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, Feb. 2010, pp. 468–469.
[19] D.-S. Kim, et al., “A 0.3–1.4 GHz All-Digital Fractional-N PLL With Adaptive Loop Gain Controller,” IEEE J. Solid-State Circuit, vol. 45, no. 11, pp. 2300–2311, Nov. 2010.
[20] E. Temporiti, et al., “A 3 GHz Fractional All-Digital PLL With a 1.8 MHz Bandwidth Implementing Spur Reduction Techniques,” IEEE J. Solid-State Circuit, vol. 44, no. 3, pp. 824–834, Mar. 2009.
[21] M. Zanuso, et al., “A Wideband 3.6 GHz Digital ΔΣ Fractional-N PLL With Phase Interpolation Divider and Digital Spur Cancellation,” IEEE J. Solid-State Circuit, vol. 46, no. 3, pp. 627–638, Mar. 2011.
[22] W. Liu, et al., “A PVT Tolerant 10 to 500 MHz All-Digital Phase-Locked Loop With Coupled TDC and DCO,” IEEE J. Solid-State Circuit, vol. 45, no. 2, pp. 314–321, Feb. 2010.
[23] K.-H. Choi, et al., “An Interpolating Digitally Controlled Oscillator for a Wide-Range All-Digital PLL,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 56, no. 9, pp. 2055–2063, Sep. 2009.
[24] X. Chen, et al., “A Fast Locking All-Digital Phase-Locked Loop via Feed-Forward Compensation Technique,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 5, pp. 857–868, May 2011.