跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫嘉鴻
Jia-Hung Suen
論文名稱: 室溫沈積高穩定性之氮化矽薄膜及其光激發光譜研究
The Investigation for Silicon Nitride Thin Film Deposited at Room Temperature
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 90
語文別: 中文
論文頁數: 100
中文關鍵詞: 電漿輔助化學氣相沉積氮化矽雷射
外文關鍵詞: laser, silicon nitride, PECVD
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的內容在於研究室溫下沉積的氮化矽薄膜之穩定性,並以加入雷射輔助的方式,改善氮化矽薄膜的穩定性。
    以單獨的電漿化學氣相沈積法(PECVD)在室溫下沉積時,氣體分子到達基板已無多餘的能量去移動到適當的位置上,以填補沉積時所形成的縫隙及孔洞,因而形成多孔狀的非晶氮化矽氫薄膜(porous a-SiNx:H),這些孔隙將使得空氣中的水氣得以滲入,進而破壞薄膜的結構並改變薄膜的特性,根據熱力學的觀點多孔非晶氮化矽氫薄膜(porous a-SiNx:H)中許多單獨的懸鍵處於不穩定的狀態,可能與空氣之中的其他分子進一步形成穩定的氧化態。
    因此單獨的電漿化學氣相沈積法在室溫下沉積出的氮化矽薄膜具有氧化的情形,進而產生特性上的變化。在本實驗中在電漿化學氣相沈積法沉積時加入雷射的輔助,可產生具有高穩定性的薄膜,量測折射率、蝕刻速率、傅氏紅外吸收光譜、平整性、光激發光譜等方面的特性,均有良好的特性,這些特性將可對於半導體元件的鈍化層以及阻擋層有很好的應用。
    在光激發光譜的研究上,我們比較室溫下單純以傳統電漿化學氣相沈積法沉積出的氮化矽薄膜與加入雷射輔助沉積出的氮化矽薄膜,結果發現以雷射去輔助沈積之薄膜具有較強的發光強度,且具有高穩定性的發光光譜,此特性使我們將來可以利用成熟的矽製程技術整合發光元件於矽晶片上。


    Advantage silicon nitride by CO2 laser assisted plasma enhanced chemical vapor deposition:
    low Si-H and N-H contained in a-SiNx:H film.
    Low surface roughness
    Prevent from moisture and oxidation
    Refraction index is stable
    Laser power will best assist at 40W.
    Stable PL spectra and higher efficiency

    目錄 一、緒論 1 二、雷射輔助電漿化學氣相沉積原理 7 2-1 概述 7 2-2雷射CVD原理 8 2-3電漿輔助CVD原理 11 三、實驗過程 15 3-1雷射輔助電漿化學氣相沉積架設 15 3-2試片切割及清洗 17 3-3 基板清洗 17 3-4 薄膜沉積 17 3-5 ZnSe鏡片清洗 21 四、量測分析 22 4-1傅立葉轉換紅外線吸收光譜儀(FTIR) 22 4-2膜厚量測儀(DEKTAK surface profiler system) 23 4-3橢圓儀(Ellipsometer) 23 4-4 原子力顯微鏡(AFM) 24 4-5 光激發光譜(Photoluminescence spectra) 24 五、實驗結果與討論 25 5-1 前言-雷射輔助對於薄膜穩定度的影響 25 5-1.1 無雷射輔助氮化矽薄膜放置不同環境下鍵結變化 25 5-1.2 雷射輔助之氮化矽薄膜鍵結變化 26 5-1.3 不同雷射瓦數沉積之氮化矽薄膜的穩定性 27 5-1.4 氮化矽薄膜放氧化後薄膜厚度變化 27 5-1.5 氮化矽薄膜放置於大氣環境下氧化後蝕刻速率變化 28 5-1.6 氮化矽薄膜放置於大氣環境下氧化後折射率變化 28 5-1.7放置於大氣中的氮化矽光激發光譜變化 29 5-2 前言-雷射輔助瓦數對薄膜品質影響 31 5-2.1 雷射輔助瓦數對薄膜鍵結的影響 32 5-2.2 雷射輔助瓦數對薄膜沈積速率的影響 33 5-2.3 雷射輔助瓦數對薄膜蝕刻速率的影響 33 5-2.4 雷射輔助瓦數對薄膜折射率的影響 34 5-2.5 雷射輔助瓦數對薄膜表面粗糙度的影響 35 5-2.6 雷射輔助瓦數對氮化矽光激發光譜的影響 35 5-3 前言-氮化矽薄膜光激發光譜研究 37 5-3.1 氮化矽薄膜光激發光譜的穩定性 37 5-3.2 熱處理對氮化矽薄膜光激發光譜的變化 38 5-3.3薄膜照射氦鎘雷射後光激發光譜變化 41 六、結論 42 七、參考資料 43

    [1] W. S. Liao, C. H. Lin, and S. C. Lee, “Oxidation of silicon nitride prepared by Plasma enhanced chemical vapor deposition at low temperature”, Applied Physics Letters, Vol.65, pp.2229-2231, (1994).
    [2] T. F. Deutsch, “Infrared laser Photochemistry of silane”, Journal of Chemical Physics, Vol.70, pp.1187-1192, (1979).
    [3] 江祥熙 著, “二氧化碳雷射誘發化學氣相沉積成長碳值膜”, 國立中央大學碩士論文, 第7頁~第22頁, (1997)。
    [4] M. Meunier, J. H. Flint, J. S. Haggerty, and D. Adler “Light-induce chemical vapor deposition of hydrogenated amorphous silicon.Ⅱ Film properties”, Journal of Applied Physics, Vol.62, pp.2822-2829, (1987).
    [5] 丁勝懋 著,“雷射工程導論”, 中央圖書出版社, 第173頁~第242頁, (1995)。
    [6] L. Eckertova, and T. Ruzicka, “Diagnostics and Applications of Thin Films” Ch.1 & 2, Institute of Physics Publishing, (1993).
    [7] 蔡宏盛 著, “二氧化碳雷射在化學氣相沉積法(CVD)上的應用”, 國立中央大學博士論文, 第81頁, (2000)。
    [8] W. L. Warren, “Energy level of the nitrogen dangling bond in amorphous silicon nitride”, Applied Physics Letters, Vol.59, pp.1699-1701, (1991).
    [9] A. Matsuda, and K. Tanaka, “Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical separation technique”, Journal of Applied Physics, Vol.60, pp.2351-2356, (1986).
    [10] Y. Watanabe, M. Shiratani, and Y. Kubo, “Effects of low frequency modulation on RF discharge chemical vapor deposition”, Applied Physics Letters, Vol.53, pp.1263-1265, (1988).
    [11] Z. Knittl, “Optics of thin films”, Wiley London, (1976).
    [12] E. V. Astrova, and V. A. Tolmachev, “Effective refractive index and composition of oxidized porous silicon films”, Materials Science and Engineering B, Vol.69–70, pp.142–148 , (2000).
    [13] V. A. Gritsenko, K. S. Zhuravlev, A. D. Milov, H. Wong, R. W. M. Kwok and J. B. Xu “Silicon dots/cluster in silicon nitride: photoluminescence and electron spin response”, Thin Solid Films, Vol.353, pp.20-24, (1999).
    [14] G. G. Siu, X. L. Wu, Y. Gu, and X. M. Bao, “Enhanced and stable photoluminescence from partially oxidized porous Si coated with Si thin films”, Journal of Applied Physics, Vol.88, pp.3781-3783, (2000).
    [15] F. Koch, and V. P. Koch, “Light from Si-nanoparticle systems-a comprehensive view”, Journal of Non-Crystalline Solids, Vol.198-200, pp.840-846, (1996).
    [16] Y. Kanemitsu, Y. Fukunishi, and T. Kushida, “Decay dynamics of visible luminescence in amorphous silicon nanoparticles”, Applied Physics Letters, Vol.77, pp.211-213, (2000).
    [17] W. S. Liao, and S. C. Lee, “Water-induced room-temperature oxidation of Si–H and –Si–Si– bonds in silicon oxide”, Journal of Applied Physics, Vol.80, pp.1171-1176, (1996).
    [18] W. L. Warren, J. Kanicki, J. Robertson, and P. M. Lenahan, “Energy level of the nitrogen dangling bond in amorphous silicon nitride”, Applied Physics Letters, Vol.59, pp.1699-1701, (1991).
    [19] X. M. Bao, X. He, T. Gao, F. Yan, and H. L. Chen, “Oxygen-related surface states and their role in photoluminescence from porous Si”, Solid State Communications, Vol.109, pp.169-172, (1999).
    [20] A. Aydinh, A. Serpenguzel, and D. Varder, “Visible photoluminescence from low temperature deposited hydrogenated amorphous silicon nitride”, Solid State Communications, Vol.98, pp.273-277, (1996).
    [21] K. S. Seol, T. Futami, T. Watanable, and Y. Ohki, “Effects of ion implantation and thermal annealing on the photoluminescence in amorphous silicon nitride”, Journal of Applied Physics, Vol.85, pp.6746-6750, (1999).
    [22] 莊達人 著, “VLSI製造技術”, 高立圖書出版社, 第146頁~第234頁, (2000)。
    [23] C. Ye, Z. Ning, M. Shen, H. Wang, and Z. Gan, ”Dielectric properties of silicon nitride films deposited by microwave electron cyclotron resonance plasma chemical vapor deposition at low temperature”, Applied Physics Letters, Vol.71, pp.336-337, (1997).
    [24] I. Kato, K. Numada, and Y. Kiyota, Japanese Journal of Applied Physics Part 1-Regular Papers & Short Notes, Vol. 27, pp.1401-1405 , (1988).
    [25] C. H. Ling, C. Y. Kwok, and K. Parasad, “ Silicon-Nitride Films Prepared by Plasma-Enhanced Chemical Vapor-Deposition (PECVD) of SiH4/NH3/N2 Mixtures - Some Physical-Properties” , Japanese Journal of Applied Physics Part 1-Regular Papers & Short Notes, Vol.25, pp.1490-1494, (1986).
    [26] H. S. Tsai, G. J. Jaw, S. H. Chang, C. C. Cheng, C. T. Lee, and H. P. Liu, “Laser-assisted plasma-enhanced chemical vapor deposition of silicon nitride thin film”, Surface and Coatings Technology, Vol.132, pp. 158-162, (2000).
    [27] C. S. Hong, and H. L. Hwang, “Evidence of light-induced bond breaking in hydrogenated amorphous silicon”, Applied Physics Letters, Vol.49, pp.645-647, (1986).
    [28] H. S. Tsai, H. C. Chiu, S. H. Chang, C. C. Cheng, C. T. Lee, and H. P. Liu, “CO2 Laser Assisted Plasma Enhanced Chemical Vapor Deposition of Silicon Dioxide Thin Film”, Japanese Journal of Applied Physics Part 1-Regular Papers & Short Notes , Vol.40, pp.3093-3095, (2001).
    [29] S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition”, Journal of Applied Physics, Vol.77, pp.6534-6541, (1995).
    [30] D. Chen, J. M. Viner, P. C. Taylor, and J. Kanicki, “Photoluminescence and electron spin resonance in nitrogen-rich amorphous silicon nitride”, Journal of Non-Crystalline Solids, Vol.182, pp.103-108, (1995).
    [31] N. M. Park, T. S. kim, and S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Applied Physics Letters, Vol.78, pp.2575-2577, (2001).
    [32] S. Botti, R. Coppola, F. Gourbilleau, and R. Rizk, “Photoluminescence from silicon nano-particles synthesized by laser-induced decomposition of silane”, Journal of Applied Physics, Vol.88, pp.3396-3401, (2000).
    [33] Y. Pauleau, and D. Tonneau, “Kinetics and reaction mechanisms of laser-assisted chemical vapor deposition of polycrystalline silicon dots from silane”, Journal of Applied Physics, Vol.91, pp.1553-1559, (2002).

    QR CODE
    :::