跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾敍哲
Hsu-Che Tseng
論文名稱: 量子點超晶格奈米線在熱引擎的應用
Quantum dot superlattice nanowire heat engines
指導教授: 郭明庭
Ming-Ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 41
中文關鍵詞: 量子點超晶格奈米線熱引擎熱電效應
外文關鍵詞: Quantum dot superlattice nanowire, heat engines, thermoelectric
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討一維的量子點超晶格奈米線系統應用在熱引擎的分析。由於超晶格奈米線會降低聲子熱導,在能量收集的應用中極具潛能,但是許多的研究都是關於相同能階的奈米線,而且不考慮負載效應,在這裡我們提出了一種階梯式能階的超晶格奈米線應用在熱引擎,並且考慮負載的感應熱電壓,利用非線性席貝克效應控制奈米線中的非對稱能階排列,讓通道在順偏時傾向共振狀態,在逆偏時則具有非共振狀態,使其具有與方向相依的輸出功率及熱電流。在這種機制下,發現階梯式能階超晶格奈米線的功率輸出及效率都會優於相同能階的超晶格奈米線。除此之外,熱引擎也具有熱二極體的功能,可以表現出顯著的熱整流比率,而在開路條件中會發現負微分熱導的現象,有利應用於熱電邏輯電路及熱電電晶體。


    This paper discussed the one-dimensional quantum dot superlattice nanowire(SLNW) heat engine(HE) due to reduction of the phonon thermal conductance.Many efforts have been devoted to the SLNW with uniform energy level and neglect the external loading effect. Here we propose a heat engine made of SLNW with staircase-like quantum dot energy levels and consider the induced thermal voltage of the load.The nonlinear Seebeck effect is used to control the alignment energy level in the nanowire and allow resonant electron transport under forward temperature bias, while they are in off-resonant regime under reverse temperature bias. Under this mechanism, the power output and efficiency of such a SLNW are better than SLNWs with uniform QD energy levels. In addition, the HE has the the functionality of a heat diode with impressive negative differential thermal conductance under open circuit condition, which is beneficial to thermoelectric logic circuits and thermoelectric transistors.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章、導論 1 1.1 前言 1 1.2 熱電效應及熱引擎效率 1 1.3 研究動機 4 第二章、系統模型與公式推導 5 2.1 系統模型 5 2.2 系統參數 8 2.3 穿隧電流及電子熱流 9 2.4 電子傳輸係數 10 2.5 聲子熱流 12 第三章、熱引擎系統特性與分析 13 3.1 前言 13 3.2 溫差變化及不同能階分布對於效率的影響 14 3.3 聲子熱流對於效率的影響 19 3.4 一維系統的開路熱電性質探討 20 3.5 熱離子輔助穿隧對電子熱流及熱整流比率的影響 24 第四章、結論 26 參考文獻 27

    [1] Lon E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems”, Science 321, 1457 (2008).
    [2] Y. G. Gurevich and G. N. Logvinov, “Physics of Thermoelectric Cooling”, Semicond. Sci.
    [3] M. Leijnse, M.R. Wegewijs, K. Flensberg, “Nonlinear thermoelectric properties of molecular junctions with vibrational coupling”,Phys. Rev. B 82 045412 (2010).
    [4] A. F. Ioffe, “ Semiconductor Thermoelements, and Thermoelectric Cooling”, Infosearch Limited, London (1957).
    [5] D.M.T. Kuo, Y.C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”,Phys. Rev. B 81205321 (2010).
    [6] N. Nakpathomkun, H.Q. Xu, H. Linke, “Thermoelectric efficiency at maximum power in low-dimensional systems”,Phys. Rev. B 82 235428 (2010).
    [7] A.N. Jordan, B. Sothmann, R. Sanchez, and M. Buttiker, “Powerful and efficient energy harvester with resonant-tunneling quantum dots”,Phys. Rev. B 87 075312 (2013).
    [8] R.S. Whitney, “Most Efficient Quantum Thermoelectric at Finite Power Output
    ”,Phys. Rev. Lett. 112 130601 (2014).
    [9] R.S. Whitney, “Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output”,Phys. Rev. B 91 115425 (2015).
    [10] B. De, B. Muralidharan, “Thermoelectric study of dissipative quantum-dot heat engines”,Phys. Rev. B 94 165416 (2016).
    [11] A.M. Dare, P. Lombardo, “Powerful Coulomb-drag thermoelectric engine”, Phys. Rev. B 96 115414 (2017).
    [12] P. Pietzonka, Udo Seifert, “Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines”, Phys. Rev. Lett. 120 190602 (2018).
    [13]M. Josefsson, A. Svilans, A.M. Burke, and E.A. Hoffmann, S. Fahlvik, C. Thelander,
    M. Leijnse, and H. Linke, “A quantum-dot heat engine operating close to the thermodynamic efficiency limits”,Nat. Nanotechnol. 13 920 (2018).
    [14] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78 161406(R) (2008).
    [15] T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, “Quantum Dot Superlattice
    Thermoelectric Materials and Devices”,Science 297 2229 (2002).
    [16] M. Zebarjadi, K. Esfarjania, M.S. Dresselhaus, and Z.F. Ren, “Perspectives on thermoelectrics: from fundamentals to device applications”,G. Chen, Energy Environ.
    Sci. 5 5147 (2012).
    [17] D.M.T. Kuo, C.C. Chen, and Y.-C. Chang, “Optimizing thermoelectric efficiency of superlattice nanowires at room temperature” , Physica E 102 39 (2018).
    [18]G.T. Craven, D.H. He, and A. Nitzan, “Wiedemann−Franz Law for Molecular Hopping Transport”,Phys. Rev. Lett. 121 247704 (2018).
    [19] H. Haug, A.P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors,Springer”, Heidelberg, (1996).
    [20] A.P. Jauho, N.S. Wingreen, Y. Meir, “Time-dependent transport in interacting and noninteracting resonant-tunneling systems”,Phys. Rev. B 50 (1994) 5528 and references therein.
    [21] D.M.T. Kuo, C.C. Chen, and Y.C. Chang, “Large enhancement in thermoelectric efficiency of quantum dot junctions due to increase of level degeneracy”,Phys. Rev. B 95 075432 (2017).
    [22]D.M.T. Kuo, S.Y. Shiau, and Y.C. Chang, “Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system” ,Phys. Rev. B. 84 245303 (2011).
    [24] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D. Yang, and A.Majumdar,“Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008).
    [25] M. Hu, D. Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity ” , Nano Lett. 12 5487 (2012).
    [26] W. Lu, J. Xiang, B.P. Timko, Y. Wu, and C.M. Lieber, “One-dimensional hole gas in germaniumsilicon nanowire heterostructures” ,Proc. Natl. Acad. Sci. U.S.A. 102
    10046 (2005).
    [27] D.M.T. Kuo, Y.C. Chang, “Heat Diodes Made of Quantum-Dot Nanowires”,2018IEEE 13th Nanotechnology Materials and Devices Conference (NMDC),(2018).
    [28] D.H. He, S. Buyukdagli, and B. Hu, “Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices”, Phys. Rev. B 80 104302 (2009).
    [29] B. Li, L. Wang, and G. Casati, “Negative differential thermal resistance and thermal transistor”, Appl. Phys. Lett. 88 143501 (2006).
    [30] L. Wang, B. Li, “Thermal Logic Gates:Computation with Phonons”,Phys. Rev. Lett. 99 177208 (2007).

    QR CODE
    :::