跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃尹聖
Yin-Sheng HUANG
論文名稱: 西太平洋晚第四紀之米蘭科維奇尺度的環境變遷:磁學參數之時間序列分析
Late Quaternary Milankovitch-scale environmental variation in the western Pacific: Time-series analysis of magnetic data
指導教授: 李德貴
Teh-Quei Lee
許樹坤
Shu-Kun Hsu
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 98
語文別: 英文
論文頁數: 111
中文關鍵詞: 西太平洋小波時間序列米蘭科維奇環境變遷
外文關鍵詞: western Pacific, wavelet, time-series Milankovitch, environmental change
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著岩芯鑽取技術的進步和越來越多深海岩芯的研究,低緯度赤道地區,已普遍被認為是控制全球氣候變遷的重要一環。其中較重要的影響因子包括:西太平洋暖池(Western Pacific Warm Pool)和間熱帶幅合帶(Inter-Tropical Convergence Zone)等。本研究係利用位於赤道西太平洋地區的邊緣海,所鑽取的三根深海岩芯來進行磁學參數的研究和小波頻譜(wavelet spectrum)的分析。這三根岩芯包括位於班達海(Banda Sea)的岩芯MD012380,年代大約包含過去82萬年;位於南中國海(South China Sea)北部的岩芯MD012396,年代大約包含過去46萬年;以及位於珊瑚海(Coral Sea)北部的岩芯MD052928,年代大約包含過去38萬年。主要分析的磁學參數包括磁感率(magnetic susceptibility: ?)、飽和等溫殘磁(IRM: isothermal remanent magnetization)、逆磁滯殘磁(ARM: anhysteretic remanent magnetization)和磁感率的比值(ARM/??),以及S比值(S-ratio)。藉由比較磁學參數和氧同位素(?18O)之間變化的異同,來探討冰期和間冰期的氣候變化,對岩芯中磁性物質所造成的影響。
    冰河時期在班達海和南中國海北部這兩個區域,由於受到全球海水面下降、陸地相對上升的影響,導致眾多洋流流動的通道被封閉,流動的強度因而降低。因此洋流所能攜帶至岩芯站址附近沉積的磁性物質,其總量會減少且顆粒較粗。而來自陸源(陸地或大陸棚)氧化程度較高的磁性物質也會相對較多。在間冰期則相反,磁性物質之總量會較多,顆粒度較細且受到氧化程度亦較低。而在珊瑚海北部,雖然全球海水面的升降同樣主控此區域磁性物質的改變,但是區域性降雨量的變化似乎也造成影響。在間冰期時,岩芯站址附近的沉積物,主要來自新幾內亞(New Guinea)中部地區。這些沉積物是由數條主要河川帶進珊瑚海北部,再由沿岸的洋流(Hiri Current)帶到岩芯站址附近沉積。由於此較遠的搬運過程,磁性物質的總量變得較少且粒度較細。而在海水面下降的冰期,沿岸洋流(Hiri Current)水道可能改變(往海洋方向後退),因此由新幾內亞中部地區帶來的磁性物質的總量變少。而此時來自新幾內亞東南端,受到冰川侵蝕作用所帶來的粗顆粒磁性礦物總量則相對增加。
    此外,藉由小波頻譜對這些參數的分析,得知對磁性物質的總量及顆粒度變化較敏感的參數(?、SIRM、ARM/??),記錄著很強的米蘭科維奇(Milankovitch)之週期,特別是10萬年的偏心率(eccentricity)週期,同時此週期也和冰期、間冰期的循環週期有關。而反應磁性物質種類改變的參數(S-ratio),除了10萬年的週期之外,也很明顯受到地球自轉軸傾角變化(obliquity,週期4萬年)和歲差(precession,週期2萬年)的影響。由此結果同樣可推測,在晚第四紀的西太平洋地區,這些岩芯中沉積的磁性物質之變化,主要受控於全球海水面的升降,因此有很強烈的10萬年之週期。此外區域性的雨量改變也可能同樣影響著磁性物質的變化,且可能受到地軸傾角變化和歲差的控制,因此在岩芯中記錄著4萬年和2萬年的週期。


    With increased evidence from marine sediment cores, the tropical ocean has been considered as a key role of modulating global climate change on orbital/suborbital time scales. In this study, oxygen isotopic and magnetic data from three IMAGES cores are presented. These cores includes MD012380 (covering an age period of 820 ka) from the Banda Sea, MD012396 (covering an age period of 460 ka) from the southern South China Sea (SCS) and MD052928 (covering an age period of 380 ka) from the northern Coral Sea. Four high-resolution magnetic records are presented, including magnetic susceptibility, SIRM, ARM/??and S-ratio. These parameters are compared with the ?18O to verify the relationship between the magnetic records and marine isotopic stratigraphy (MIS) variation.
    Both in the Banda Sea and northern SCS, the sea-water currents (such as the Indonesian Throughflow) intensity might decrease due to global sea-level reduction in glacial periods. Magnetic minerals carried by the currents therefore became fewer, coarser and more oxidative. On the contrary, there should be more, finer and less oxidative magnetic minerals due to opposite environmental conditions in interglacial periods. In the northern Coral Sea, although magnetic records are also dominated by global sea-level change, the amount of regional precipitation may significantly influence their variation. In interglacial periods, the sediments, sourcing from central New Guinea, are brought by the Hiri Current and then deposited around the northern Coral Sea. In glacial periods, because of reduction in sea-level, route of the Hiri Current might be back seaward. Sediments source therefore shifted to southeastern PNG due to this change.
    Furthermore, wavelet spectrum is computed to analyze the dominant periods embedded in these time-series data. Both characteristics of the magnetic abundance and magnetic grain size vary simultaneously with MIS change and present the Milankovitch periods, especially the 100-ka period (glacial-interglacial cycle). However, variation of the magnetic mineralogy shows good relationship to the solar insolation variation with periods of 40-ka and 20-ka in addition to a 100-ka period. These characteristics indicate that the magnetic records are dominated by sea-water currents related to global sea-level change and may also influenced by the amount of regional precipitation related to the solar insolation in the western Pacific for the late Quaternary.

    Contents Chinese abstract i English abstract iii Acknowledgement v Contents vii List of figures xi List of tables xv 1. Introduction………………………………………………………………………..1 1.1 Environmental settings of the western Pacific………………………………….1 1.2 Sea-water circulation in the western Pacific……………………….…………...2 1.3 Materials of the study…………………………………………………………...3 1.4 Past studies of the orbital periods in the western Pacific…….………………....4 1.5 Purpose of the study…………………………………………………………….5 2. Data and methods..............…………………………………………….................11 2.1 Experiment procedures………………………………………………………...11 2.2 Environmental magnetic parameters…………………………………………..12 2.3 Relative paleointensity simulation…………………………………………….13 2.4 The Milankovitch theory……………………………………………………....14 2.5 Data processing………………………………………………………………..15 2.6 Wavelet transform……………………………………………………………..16 3. Environmental variation in the Banda Sea……………………………………..29 3.1 Environmental settings………………………………………………………...29 3.2 Material and analysis………………………………………………………….30 3.2.1 Material and magnetic minerals of the core……………………………..30 3.2.2 Relative paleointensity simulation………………………………………31 3.3 Results…………………………………………………………………………32 3.3.1 Age control and age model………………………………………………32 3.3.2 Properties of the magnetic minerals in glacial/interglacial periods……...33 3.3.3 Results of wavelet spectra……………………………………………….34 3.4 Discussion……………………………………………………………………..35 3.4.1 Magnetic characteristics in glacial/interglacial periods…………………35 3.4.2 Milankovitch cycles……………………………………………………..36 3.5 Summaries……………………………………………………………………..37 4. Environmental variation in the northern South China Sea…………………...49 4.1 Environmental settings………………………………………………………...49 4.2 Material and analysis………………………………………………………….50 4.2.1 Material and magnetic minerals of the core……………………………..50 4.2.2 Age control and age model………………………………………………51 4.3 Results…………………………………………………………………………52 4.3.1 Properties of the magnetic minerals..........................................................52 4.3.2 Results of wavelet spectra……………………………………………….53 4.4 Discussion……………………………………………………………………..54 4.5 Summaries……………………………………………………………………..55 5. Environmental variation in the northern Coral Sea…………………………...67 5.1 Environmental settings………………………………………………………...67 5.2 Material and analysis………………………………………………………….68 5.2.1 Material and magnetic minerals of the core……………………………..68 5.2.2 Relative paleointensity simulation………………………………………69 5.3 Results…………………………………………………………………………69 5.3.1 Age control and age model………………………………………………69 5.3.2 Properties of the magnetic minerals…………………………….…….....70 5.3.3 Results of wavelet spectra……………………………………………….71 5.4 Discussion……………………………………………………………………..72 5.4.1 Source change of magnetic minerals…………………………………….72 5.4.2 Domination of the orbital forces………………………………………...73 5.5 Summaries……………………………………………………………………..74 6. Discussion…………………………………………………………………………87 6.1 Differences of the magnetic characteristics……………………………………87 6.1.1 Material abundance parameter: ?………………………………………..87 6.1.2 Magnetic grains size parameter: ARM/?………………………………...88 6.1.3 Magnetic mineralogy parameter: S-ratio………………………………...89 6.2 The mid-Brunhes event……………………….………………………………90 6.2.1 FFT spectrum analysis…………………………………………………91 6.2.2 Wavelet spectrum analysis………………………………………………91 7. Conclusions……………………………………………………………………..103 References………………………………………………………………………….105 List of figures 1. Introduction………………………………………………………………………..1 Figure 1.1 Bathymetric map of the western Pacific………………………………..6 Figure 1.2 Direction of the ocean current in the Banda Sea………………………..7 Figure 1.3 Surface circulation patterns of the South China Sea……….…………...8 Figure 1.4 Surface circulation pattern around Papua New Guinea………………...9 2. Data and Methods………………………………………………………………...11 Figure 2.1 (a) The eccentricity variation of the La93 model over the past 1 Ma. (b) Wavelet spectrum of the eccentricity………………………………19 Figure 2.2 (a) The obliquity variation of the La93 model over the past 1 Ma. (b) Wavelet spectrum of the obliquity…………………………………20 Figure 2.3 (a) The Precession variation of the La93 model over the past 1 Ma. (b) Wavelet spectrum of the precession………………………………..21 Figure 2.4 The flow chart of data processing in the study………….…………….22 Figure 2.5 The Morlet wavelet……………………………………………………23 Figure 2.6 (a) The sinusoidal ETP signal. (b) Wavelet spectrum of the signal…...24 Figure 2.7 (a) The sawtooth ETP signal (b) Wavelet spectrum of the signal……..25 Figure 2.8 (a) The modulated ETP signal of the La93 model over the past 1 Ma. (b) Wavelet spectrum of the signal………………………………….....26 Figure 2.9 (a) The modulated ETP with six peak signals over the past 1 Ma. (b) Wavelet spectrum of the signal…………………………………….27 3. Environmental variation in the Banda Sea……………………………………..29 Figure 3.1 Bathymetric map around the Banda Sea………………………………39 Figure 3.2 (a) and (b) The S-ratio and ARM/? data of the core MD012380. (c) The diagram of ARM versus ?..........................................................40 Figure 3.3 (a) The RPI simulation of the core MD012380, NRM20mT/SIRM, NRM/? and NRM20mT /ARM20mT. (b) The Sint-800…………………..41 Figure 3.4 Age model of the core MD012380…………………………………….42 Figure 3.5 Time-series data used in the study including (a) ?18O, (b) magnetic susceptibility, (c) SIRM, (d) ARM/??and (e) S-ratio……?? Figure 3.6 (a) ?18O record of the core MD012380. (b) Wavelet spectrum of the ?18O……………………………………...44 Figure 3.7 (a) Magnetic susceptibility of the core MD012380. (b) Wavelet spectrum of the magnetic susceptibility…………………..45 Figure 3.8 (a) SIRM of the core MD012380. (b) Wavelet spectrum of the SIRM…………………………………….46 Figure 3.9 (a) ARM/? of the core MD012380. (b) Wavelet spectrum of the ARM/?…………………………………..47 Figure 3.10 (a) S-ratio data of the core MD012380. (b) Wavelet spectrum of the S-ratio……………………………………48 4. Environmental variation in the northern South China Sea…………………...49 Figure 4.1 Bathymetric map of the South China Sea……………………………..58 Figure 4.2 (a) and (b) The S-ratio and ARM/? data of the core MD012396. (c) The diagram of ARM versus ?……………………………………..59 Figure 4.3 Age model of the core MD012396…………………………………….60 Figure 4.4 Time-series records of the study. (a) ?18O data, (b) magnetic susceptibility, (c) SIRM, (d) ARM/??and (e) S-ratio........61 Figure 4.5 (a) ?18O record of the core MD012396. (b) Wavelet spectrum of the ?18O……………………………………...62 Figure 4.6 (a) Magnetic susceptibility of the core MD012396. (b) Wavelet spectrum of the magnetic susceptibility…………………..63 Figure 4.7 (a) SIRM data of the core MD012396. (b) Wavelet spectrum of the SIRM…………………………………….64 Figure 4.8 (a) ARM/? data of the core MD012396. (b) Wavelet spectrum of the ARM/?…………………………………..65 Figure 4.9 (a) S-ratio data of the core MD012396. (b) Wavelet spectrum of the S-ratio……………………………………66 5. Environmental variation in the northern Coral Sea…………………………...67 Figure 5.1 Bathymetric map of the study area…………………………………….76 Figure 5.2 (a) and (b) The S-ratio and ARM/? data of the core MD052928. (c) The diagram of ARM versus ?……………………………………..77 Figure 5.3 (a) Three RPI simulation of the core MD052928, NRM20mT/SIRM, NRM/? and NRM20mT /ARM20mT. (b) The Sint-800…………………..78 Figure 5.4 Age model of the core MD052928…………………………………….79 Figure 5.5 Time-series data used in the study including (a) ?18O, (b) magnetic susceptibility, (c) SIRM, (d) ARM/??and (e) S-ratio……80 Figure 5.6 (a) ?18O record of the core MD052928. (b) Wavelet spectrum of ?18O………………………………………….81 Figure 5.7 (a) Magnetic susceptibility of the core MD052928. (b) Wavelet spectrum of the magnetic susceptibility…………………..82 Figure 5.8 (a) SIRM data of the core MD052928. (b) Wavelet spectrum of SIRM………………………………………...83 Figure 5.9 (a) ARM/? data of the core MD052928. (b) Wavelet spectrum of ARM/?………………………………………84 Figure 5.10 (a) S-ratio data of the core MD052928. (b) Wavelet spectrum of S-ratio………………………………………..85 6. Discussion…………………………………………………………………………87 Figure 6.1 Magnetic susceptibility records of the studied cores. (a). MD012380, (b). MD012396 and (c). MD052928………………...94 Figure 6.2 ARM/? records of the studied cores. (a). MD012380, (b). MD012396 and (c). MD052928………………...95 Figure 6.3 S-ratio records of the studied cores. (a). MD012380, (b). MD012396 and (c). MD052928………………...96 Figure 6.4 S-ratio records of the studied cores. (a). MD012396 and (b). MD052928…………………………………..97 Figure 6.5 Segmented FFT spectra of the records from the MD012380 core…….98 Figure 6.6 Wavelet spectra of the magnetic susceptibility data from the cores. (a). MD972142 and (b). MD012380…………………………………..99 Figure 6.7 Wavelet spectra of the ARM/? data from the cores. (a). MD972142 and (b). MD012380…………………………………100 Figure 6.8 Wavelet spectra of the S-ratio data from the cores. (a). MD972142 and (b). MD012380…………………………………101 List of Tables Table 3.1 Age control points of the core MD012380………………………………...38 Table 4.1 Age control points of the core MD012396………………………………...57 Table 5.1 Age control points of the core MD052928………………………………...75 Table 6.1 Variation of the magnetic records from the studied cores…………………93

    References
    Bassinot, F. and A. Baltzer, 2001. On board report of WEPAMA cruise MD122/ IMAGES VII, pp. 133. R.V. Marion Dufresne.
    Bassinot, F. C., L. D. Labeyrie, E. Vincent, X. Quidelleur, N. J. Shackleton, and Y. Lancelot, 1994. The astronomical of climate and the age of the Brunhes- Matuyama magnetic reversal. Earth and Planet. Sci. Lett. 123, 91-108.
    Berggren, W.A. et al., 1995. Late Noegene chronology: New perspectives in high- resolution stratigraphy. GSA Bulletin, 107(11): 1272-1287.
    Boulay S., C. Colin, A. Trentesaux, S. Clain, Z. Liu and C. Lauer-Leredde, 2007. Sedimentary responses to the Pleistocene climate variations recorded in the South China Sea. Quat. Res. 68, 162-172
    Broecker, W. S. and J. van Donk, 1970. Insolation changes, ice volumes, and the ?18O record in deep-sea cores. Rev. Geophys. Space Phys. 8, 169-197.
    Brunskill, G. J., 2004. New Guinea and its coastal seas, a testable model of wet tropical coastal processes: an introduction to Project TROPICS. Continental Shelf Research 24, 2273-2295.
    Cane, M. and A. Clement 1999. A role for the tropical coupled ocean-atmosphere system on Milankovitch and millennial time-scales, part II: Global impacts, in Mechanisms of Global Climate Change at Millennial Scales, Geophys. Monogr. Ser. 112, cited by P. U. Clark, R. S. Webb and L. D. Keigwin, pp. 373-393, AGU, Washington, D. C.
    Chao, B. F. and I. Naito, 1995. Wavelet analysis provides a new tool for studying earth’s rotation. Eos, Trans. AGU, 76, 161-165.
    Chen C.W., 2002. Late Quaternary planktonic foraminiferal oxygen isotope record in the Western Pacific Warm Pool. Master’s thesis, National Taiwan University, Taipei, P.60 (In Chinese).
    Chen, C. W., K. Y. Wei, H. S. Mii and T. N. Yang, 2008. A late Quaternary planktonic foraminiferal oxygen isotope record of the Banda Sea: chronostratigraphy, orbital forcing, and paleoceanographic implications. Terr. Atmos. Ocean.19, 331-339.
    Chen, K. F., 2006. Magnetic study of the core MD012396 from the South China Sea: environmental changes of the South China Sea since 460 ka. Master’s thesis, National Taiwan University, Taipei, Taiwan. P.111 (In Chinese).
    Chou, Y. M., 2003. Magnetic study of the core MD012414 from the Okhotsk Sea: paleo-environmental variation of the northeastern Asia since 1.8 Ma. Master’s thesis, National Taiwan Normal University, Taipei, Taiwan. P.111 (In Chinese).
    Clemens, S. C. and W. L. Prell, 2003. Data report: oxygen and carbon isotopes from Site 1146, Northern Southern China Sea. Proceedings of the Ocean Drilling Program, Scientific Results 184, 1-8.
    Fairbank, R. G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep water circulation. Nature 342, 637-642
    Gagan, M. K., E. J. Hendy, S. G. Haberle and W. S. Hantoro, 2004. Post-glacial evolution of the Indo-Pacific warm pool and El Nino-Southern Oscillation. Quaternary. International. 118, 127-143.
    Guyodo, Y. and J. P. Valet, 1999. Global changes in intensity of the Earth''s magnetic field during the pass 800 kyr. Nature 399, 249-252.
    Hastenrath S., 2009. Past glaciation in the tropics. Quat. Sci. Rev., 28(9-10), 790-798.
    Hobbs, J. E., J. A. Lindesay and H. A. Bridgman, 1998. Climates of the Southern Continents: Present, Past and Future, pp. 63-100. John Wiley & Sons, Ltd, West Sussex, England.
    Holbourn A., W. Kuhnt, H. Kawamura, Z. Jian, P. Grootes, H. Erlenkeuser and J. Xu, 2005. Orbitally paced paleoproductively variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kry. Paleoceanography 20, PA3002.
    Hu, J. Y., H. Kawamura, H. S. Hong and Y. Q. Qi, 2000. A review on the currents in the South China Sea: seasonal circulation, South China warm current and Kuroshio intrusion. J. Oceanogr. 56, 607-624.
    Huang, Y. S., T. Q. Lee, S. K. Hsu and T. N. Yang, 2009. Paleomagnetic field variation with strong negative inclination during the Brunhes chron at the Banda Sea, equatorial southwestern Pacific. Phys. Earth Planet. Int. 173, 162-170.
    Jansen, J. H. F., A. Kuijpers and S. R. Troelstra, 1986. A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science 232, 619-622.
    Kawamura, H., A. Holbourn and W. Kuhnt, 2006. Climate variability and land-ocean interactions in the Indo-Pacific Warm Pool: A 460-ka palynological and organic geochemical record from the Timor Sea. Marine Micropaleontology 59, 1-14.
    Kershaw, A. P., S. van der Kass and P. T. Moss, 2003. Late Quaternary Milankovitch- Scale climatic change and variability and its impact on monsoonal Australasia. Mar. Geol. 201, 81-95.
    King, J. W., S. K. Banerjee, J. Marvin and O. Ozdemir, 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in nature materials: some results from lake sediments. Earth and Planet. Sci. Lett. 59, 404-419.
    King, J. W., S. K. Banerjee and J. Marvin, 1983. A new rock magnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years. J. Geophy. Res. 88, 5911-5921.
    Kuhnt, W., A. E. Holbourn, R. Hall, M. Zuleva and R. Kase, 2004. Neogene History of the Indonesian Throughflow, in Continent-Ocean Interactions Within East Asian Marginal Seas. Geophys. Monogr. Ser. 149, pp. 287-308, AGU, Washington, D. C.
    Laskar, J., F. Joutel and F. Boudin, 1993. Orbital, precession and insolation quantities for the Earth from -20 Myr to +10 Myr. Astron. Astrophys. 270, 522-533.
    Lee, M. Y., K. Y. Wei and Y. G. Chen, 1999. High resolution oxygen isotope stratigraphy for the last 150,000 years in the southern South China Sea: core MD972151. Terr. Atmos. Ocean. 10, 239-254.
    Lee, T. Q., 2000. Geomagnetic secular variation of the last one million years recorded in core MD972142 from southeastern South China Sea. J. Geol. Soc. China 43(3), 423-434.
    Li, Q., B. Li, B. McGrowran, Z. Zhou, J. Wang and P. Wang, 2006. Late Miocene development of the western Pacific warm pool: Planktonic foraminifer and oxygen isotopic evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 237, 465-482.
    Liao, Y. C., 2008. Benthic foraminifer oxygen isotopic stratigraphy of the last 300,000 years in core MD052928 from offshore southeastern Papua New Guinea. Master’s thesis, National Taiwan Ocean University, Keelung, Taiwan. P.55 (In Chinese).
    Lisiecki, L. E. and M. E. Raymo, 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic ?18O records. Paleoceanography 20, PA1003.
    Liu, H. S. and B. F. Chao, 1998. Wavelet spectral of the earth’s orbital variation and paleoclimate cycles. J. Atmos. Sci. 55, 227-236.
    Liu, Z., S. Tuo, C. Colin, J. T. Liu, C. Y. Huang, K. Selvaraj, C. T. Chen, Y. Zhao, F. P. Siringan, S. Boulay and Z. Chen, 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Mar. Geol. 255, 149-155.
    Maher, B. A., 1988. Magnetic properties of some synthetic sub-micron magnetite. Geophys J. Int. 94, 83-96.
    McAlpine, J. R., G. Keig and R. Falls, 1983. Climate of Papua New Guinea. CSIRO and Australian National University Press, Canberra, Australia.
    Morlet, J., I. Arehs, I. Fourgeau and D. Giard, 1982. Wave propagation and sampling theory. Geophysics 47, 203-236.
    Muller, R. A. and G. J. MacDonald, 2000. Ice Ages and Astronomical Causes: Data, spectral analysis and mechanisms, pp. 1-318. Springer-PRAXIS, Chichester, UK.
    Opdyke N. D. And J. E. T. Channell, 1996. Magnetic parameters sensitive to concentration, grain size and mineralogy, in Magnetic stratigraphy, pp. 251-253, Academic Press, USA.
    Qu, T., H. Mitsudera and T. Yamagata, 2000. Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res. 105, 6415-6424.
    Shiau, L. J., P. S. Yu, K. Y. Wei, M. Yamamoto, T. Q. Lee, T. E. Fang and M. T. Chen, 2008. Sea surface temperature, productivity and terrestrial flux variations of the southeastern South China Sea over the past 800000 years (MIAGES MD972142). Terr. Atmos. Ocean. 19(4), 363-376
    Siegert, M. J., 2001. Ice Sheet and Late Quaternary Environmental Change. pp. 1-222, John Wiley & Sons, Ltd, West Sussex, England.
    Stott, L., C. Poulsen, S. Lund and R. Thunell, 2002. Super ENSO and global climate oscilations at millennial time scales. Science 297, 222-226
    Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Rev. Geophys. 31(3), 319-354.
    Tric, E. et al. 1992. Paleointensity of the geomagnetic field during the last 80,000 years. J. Geophys. Res. 97(B6), 9337-9351.
    Visser, K., R. Thunell and L. Stott, 2003. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 421, 152-155.
    Wang, P., L. Wang, Y. Bian and Z. Jian, 1995. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Mar. Geol. 127, 145-165.
    Wang, P., J. Tian, X. Chen, C. Liu and J. Xu, 2003. Carbon reservoir change preceded major ice-sheet expansion at the mid-Brunhes event. Geology 31, 239-242.
    Wang, P., 2009. Global monsoon in a geological perspective. Chinese Sci. Bull. 54(7), 1113-1136.
    Wei, K. Y., T. Z. Chiu and Y. G. Chen, 2003. Toward establishing a maritime proxy record of the East Asian summer monsoons for the late Quaternary. Mar. Geol. 201, 67-79.
    Wessel, P. and W. H. F. Smith, 1998. New improved version of Generic Mapping Tools released, EOS Trans. AGU 79, pp. 579.
    Yan, X. H., C. R. Ho, Q. Zheng and V. Klemas 1992. Temperature and size variabilities of the western Pacific warm pool. Science 258, 1643-1645.
    Yokoyama, Y., P. De Dekker, K. Lambeck, P. Johnston and L. K. Fifield, 2001. Sea-level at the Last Glacial Maximum: evidence from northwestern Australia to constrain ice volumes for oxygen isotope stage 2. Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 281-297.
    Yu, P. S., C. C. Huang, Y. Chin, H. S. Mii and M. T. Chen, 2006. Late Quaternary East Asian Monsoon variability in the South China Sea: Evidence form planktonic foraminifera faunal and hydrographic gradient records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 74-90.

    QR CODE
    :::