| 研究生: |
廖耕瑩 Geng-Ying Liau |
|---|---|
| 論文名稱: |
銻化銦鎵/銻化鋁 高電洞遷移率異質接面場效電晶體之發展 Development of InGaSb/AlSb High Hole Mobility HFET |
| 指導教授: |
林恒光
Heng-Kuang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 銻 、T型閘極 、電子束 、銻化鋁 、異質接面場效電晶體 、電洞遷移率 、銻化鎵 、銻化銦鎵 |
| 外文關鍵詞: | e-beam, T-gate, antimonide, hall mobility, HFET, InGaSb, GaSb, AlSb |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銻化物系列已逐漸被評估為具有高潛力的材料應用於數位電路功能,其中銻化銦鎵合金系統擁有所有三五族化合物半導體塊材中最高的電洞遷移率,而為了實現互補式電路的需求,低功率損耗跟高電洞遷移率的傳輸特性是必須的。基於上述前提下,第一型態能帶結構的銻化銦鎵/銻化鋁異質接面場效電晶體則成為了最佳的候選者,除具有足夠的價帶位障使電洞載子有效地被侷限,更可藉由應力產生能帶分裂來降低能帶間載子的散射,並降低電洞有效質量,進一步提升電洞遷移率。
我們首先對磊晶材料進行物性分析,包含有霍爾量測、表面粗糙度、以及應力對能帶結構之變化,再來是針對元件部分進行電性上的分析,共分為三大部分,第一部份為研究不同蕭特基閘極元件特性,分析傳統鈦閘極與高滲透性的鉑閘極對元件的參數影響;第二部份為鈍化元件的發展,為了使元件暴露於大氣環境下能夠長時間保存,我們提出兩種元件鈍化的製作方式,分別為閘極後鈍化與元件製作前鈍化製程;第三部份為開發次微米T型閘極元件,在閘極長度為0.25μm,源極與汲極間距2μm的元件上汲極飽和電流於汲極偏壓為-3.0V時得到67mA/mm,峯值轉導58mS/mm,高頻增益部分fT、fMAX分別為6.15GHz與17.1GHz,電流增益截止頻率與閘極長度乘積達1.54GHz-μm。
Sb-based materials are considered to be high potential for high-speed logic and digital electronics due to their highest electron and hole mobilities among all III-V compounds. Added by their low-power consumption, complementary circuit devices can thus be realized using the amterials system. Type-I band- aligned InGaSb/AlSb two-dimensional hole gases are an excellent candidate for developing heterojunction field-effect transistors considering good hole confinement and compressive stress status, which make feasible further enhancement of hole transport properties in the quantum well.
We analyze epitaxial materials using Hall mea surements, AFM, and PL to characterize transport properties, surface roughness, and band structure. The optimized epitaxyies are fabricated into devices and characterized electrically. Three parts are studied: the first one is the effect of different Schottky gate metals and thermal stability on device performance; the second one is the impact of different passivation approaches, which primarily include the passivation after Schottky gates and the passivation before ohmic contacts, on the device parameters; and the third one is the development of submicron T-gate devices using e-beam writing lithography. In a device with 0.25μm gate length and 2μm source-to-drain spacing, dc performance of IDSS=67mA/mm and gm,peak= 58mS/mm and rf performance of fT=6.15GHz and an fMAX=17.1GHz at a drain voltage of -3.0V are successfully demonstrated. An fT×LG product is as high as 1.54GHz-?m.
[1]. J. B. Boos, W. Kruppa, B. R. Bennet, D. Park and S. W. Kirchofer, “AlSb/InAs HEMTs for low-voltage, high-speed applications,“ IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1869-1875, 1998.
[2]. C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, no. 2, pp. 255-258, 1992.
[3]. C. A. Chang, R. Ludeke, L. L. Chang and L. Esaki, “Molecular-beam epitaxy(MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759-761, 1977.
[4]. M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima and M. kimata, “Molecular beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, no. 12, pp. 2091-2096, 1978.
[5]. R. Ludeke, “Electronic properties of (100) surfaces of GaSb, InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, no. 3, pp. 304-314, 1978.
[6]. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs and In1-xGaxAsyP1-y,” J. Appl. Phys., vol. 66, no. 12, 1989.
[7]. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Lett., vol. 89, no. 11, pp. 5815-5875, 2001.
[8]. F. L. Schuermeyer, P. Cook, E. Martinez, and J. Tantillo, “Band alignment in heterostructures”, Appl. Phys. Lett., vol. 55, no. 18, pp. 1877-1878, 1989.
[9]. L. F. Luo, K. F. Longenbach and W. I. Wang, “p-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device Lett., vol. 11, no. 12, pp. 567-569, 1990.
[10]. P. P. Ruden, M. Shur, D. K. Arch, P. R. Daniels, D. E. Grider and T. E. Nohava, “Quantum well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors,“ IEEE Trans. Electron Devices, vol. 36, no. 11, pp. 2371-2379 1989.
[11]. B. R. Bennett, M. G. Ancona, J. B. Boos and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Appl. Phys. Lett., vol. 91, no. 4, pp. 042104, 2007.
[12]. J. B. Boos, B.R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass and B. V. Shanabrook, “High mobility p-channel HFETs using strained Sb-based materials,” Electron. Lett., vol. 43, no. 15, pp. 834-835, 2007.
[13]. M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding and Robert Chau, “High performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications,” 2008 IEEE International Electron Devices Meeting, IEDM 2008, pp. 1-4, 2008.
[14]. H. K. Lin, “The Design, Growth, and Characterization of Antimonide-Based Composite-Channel Heterostructure Field-Effect Transistors,” Ph.D. dissertation, UC Santa Barbara, 2004.
[15]. S. L. Chuang, “Physics of Optoelectronis Devices,” A Wiley-Interscience Publicaiton.
[16]. L. Snider, I. H. Tan and E. L. Hu, “Electron states in mesa-etched one-dimensional quantum well wires,” J. of Appl. Phys., vol. 68, no. 6, pp. 2849-2853, 1990.
[17]. I. H. Tan, G. L. Snider, and E. L. Hu, “A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh”, J. Appl. Phys., vol. 68, no. 8, pp. 4071-4076, 1990.
[18]. N. Chaturvedi, U. Zeimer, J. Würfl and G. Tränkle, ”Mechanism of ohmic contact formation in AlGaN/GaN high electron mobility transistors,” Semicond. Science Technology, vol. 21, no. 2, pp. 175-179, 2006.
[19]. B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron, vol. 49, no. 12, pp. 1875-1895, 2005.
[20]. S. Kim, I. Adesida and H. Hwang, “Measurements of thermally induced nanometer-scale diffusion depth of Pt/Ti/Pt/Au gate metallization on InAlAs/InGaAs high electron mobility transistors,” Appl. Phys. Lett., vol. 87, no. 23 pp. 1-3, 2005.
[21]. U. K. Mishra, P. Parikh, Y. F. Wu, “AlGaN/GaN HEMTs : Anoverview of device operation and application,” Electrical & Computer Engineering Department, Engineering, University of California, Santa Barbara.
[22]. F. Ren, Z. B. Hao, L. Wang, L. Wang, H. T. Li and Y. Luo, “Effects of SiNx on two-dimensional electron gas and current collapse of AlGaN/GaNhigh electron mobility transistors,” Chin. Phys. B, vol. 19, no. 1, pp. 017306, 2010.
[23]. E. J. Miller, X. Z. Dang and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure filed-effect transistors,” J. Appl. Phys., vol. 88, no. 10, pp. 5951-5958, 2000.
[24]. W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill and C. R. Whitehouse, “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 80, no. 17, pp. 3207-3209, 2002.
[25]. X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Liau, E. T. Yu, K. S. Boutros and J. M. Redwing, “Fabrication and characterization of enhanced barrier AlGaN/GaN HFET,” IEEE Electron Lett., vol. 35, no. 7, pp. 602-603, 1999.