| 研究生: |
牛翊凡 Yi-Fan Niu |
|---|---|
| 論文名稱: |
靜電紡絲技術製備鍺奈米結構於熱電效應與表面增強拉曼散射之應用研究 Thermoelectric and Surface Enhanced Raman scattering property of Ge Nanostructures fabricated by electrospinning |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 鍺 、一維奈米結構 、靜電紡絲 、熱電效應 、表面增強拉曼散射 |
| 外文關鍵詞: | germanium, one-dimensional nanostructures, electrospinning, thermoelectric, SERS |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用靜電紡絲法 (Electrospinning method) 搭配電子槍蒸鍍系統 (Electron beam evaporation system) 鍍上鍺薄膜,製備出可以控制直徑的鍺一維奈米結構,並探討其熱電性質 (Thermoelectric properties) 和表面增強拉曼散射效應 (Surface-enhanced Raman scattering effect)。由於靜電紡絲法製備的奈米纖維直徑可以藉由電紡前驅液濃度加以控制,因此鍍上鍺薄膜並移除 PVP 奈米纖維後即得到對應直徑之鍺一維奈米結構,其形貌為溝渠狀的薄膜。
在熱電性質方面,鍺具有與矽為基礎的半導體製程做整合的潛力,相較於矽有較高的電子及電洞遷移率以及較低的熱導率,且容易產生量子侷限效應,在製備成一維奈米結構後其直徑小於聲子的平均自由徑,可以有效阻礙聲子的傳導降低熱導值。根據實驗結果,直徑175 nm的鍺奈米溝渠熱導率為2.2-2.6 W/m-k相較於塊材鍺低了25倍,ZT值在600 K時達0.67。
在表面增強拉曼散射效應的探討,本實驗在不同直徑的鍺奈米溝渠表面鍍銀並退火形成銀奈米粒子,發現較小直徑的銀鍺複合奈米溝渠有較好的SERS 效果,因為其溝渠內曲率較大造成晶粒成長受到應力和空間的限制使的銀奈米粒子直徑較小,較密集,其侷域性表面電漿共振效應 (Localized surface plasmon resonance, LSPR) 的熱點數目較多增強效果較強。本實驗進一步將銀鍺複合奈米溝渠捲成螺旋結構,增加其機械強度和應用性,並縮短了溝渠間的距離到足以形成熱點,使的銀鍺複合螺旋結構有更優異的 SERS 效果。
This work utilized electrospinning method and electron beam evaporation system to fabricated one-dimensional germanium nanostructure which diameter can be controlled, also studied thermoelectric properties and surface-enhanced Raman scattering effect. Because the diameter of nanofibers fabricated by electrospinning method can be controlled by concentration of precursor, the diameter of curled germanium thin film coated on Polyvinylpyrrolidone (PVP) nanofibers are also controlled by concentration of PVP precursor. When the PVP nanofibers are removed, the remaining one-dimensional germanium nanostructures have a groove like cross-section.
In thermoelectric properties, germanium has the potential to integrate with traditional silicon based technology and has high carrier mobility, low thermal conductivity and good quantum confinement effect. When diameter of one-dimensional germanium nanostructure is less than the phonon mean free path, the surface boundary scattering will hinder the transportation of phonons and result in the lower thermal conductivity. In this experiment, the Ge nanotrough with diameter of 175 nm has the lowest thermal conductivity of 2.2-2.6 W/m-k which is a factor of 25 lower than bulk Ge. The ZT value reaches 0.67 at 600 K. In surface-enhanced Raman scattering effect, the as-prepared Ge nanotroughs with different diameters were coated silver thin film and annealed to form nanoparticles. The nanotrough with smaller diameter has better SERS effect. Because it has bigger curvature, silver nanoparticles would lack of space and subject to stress during grain growth stage. Silver nanoparticles become smaller and closer. This means it has more hot spots on the nanotrough. This experiment further twisted nanotroughs to form helix structure. The helix structure has better mechanical strength for practical applications. Because junctions of wires which have SERS effect possess better enhancement, the helix structure has better SERS effect than single nanotrough.
參考文獻
[1] F. Schäffler, "High-mobility Si and Ge structures," Semiconductor Science and Technology, 12, 1515 (1997).
[2] L. T. Ngo, D. Almécija, J. E. Sader, B. Daly, N. Petkov, J.D. Holmes, D. Erts, J.J. Boland, "Ultimate-strength germanium nanowires," Nano letters, 6, 2964-2968 (2006).
[3] H. C. Wu, T. C. Hou, Y. L. Chueh, L. J. Chen, H. T. Chiu, C. Y. Lee, "One-dimensional germanium nanostructures--formation and their electron field emission properties," Nanotechnology, 21, 455601 (2010).
[4] L. Cao, J. S. Park, P. Fan, B. Clemens, M. L. Brongersma, "Resonant germanium nanoantenna photodetectors," Nano letters, 10, 1229-1233 (2010).
[5] Z. Li, Q. Sun, X. D. Yao, Z. H. Zhu, G. Q. Lu, "Semiconductor nanowires for thermoelectrics," Journal of Materials Chemistry, 22, 22821 (2012).
[6] X. H. Sun, C. Didychuk, T. K. Sham, N. B. Wong, "Germanium nanowires: synthesis, morphology and local structure studies," Nanotechnology, 17, 2925-2930 (2006).
[7] E. Sutter, B. Ozturk, P. Sutter, "Selective growth of Ge nanowires by low-temperature thermal evaporation," Nanotechnology, 19, 435607 (2008).
[8] N. Wang, Y. Cai, R. Q. Zhang, "Growth of nanowires," Materials Science and Engineering: R: Reports, 60, 1-51 (2008).
[9] A. M. Morales, C. M. Lieber, "A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires," Science, 279, 208-211 (1998).
[10] K. Kang, D. A. Kim, H. S. Lee, C. J. Kim, J. E. Yang, M. H. Jo, "Low-Temperature Deterministic Growth of Ge Nanowires Using Cu Solid Catalysts," Advanced Materials, 20, 4684-4690 (2008).
[11] H. J. Song, S. M. Yoon, H. J. Shin, H. Lim, C. Park, H. C. Choi, "Growth of germanium nanowires using liquid GeCl4 as a precursor: the critical role of Si impurities," Chemical communications, 5124-5126 (2009).
[12] T. Hanrath, B. A. Korgel, "Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals," Journal of the American Chemical Society, 124, 1424-1429 (2002).
[13] A. M. Chockla, B. A. Korgel, "Seeded germanium nanowire synthesis in solution," Journal of Materials Chemistry, 19, 996-1001 (2009).
[14] Y. Zhang, Y. Tang, N. Wang, C. Lee, I. Bello, S. Lee, "Germanium nanowires sheathed with an oxide layer," Physical Review B, 61, 4518 (2000).
[15] R. Wagner, W. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth," Applied Physics Letters, 4, 89-90 (1964).
[16] A. D. Gamalski, J. Tersoff, R. Sharma, C. Ducati, S. Hofmann, "Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires," Nano letters, 10, 2972-2976 (2010).
[17] J. I. Lensch-Falk, E. R. Hemesath, D. E. Perea, L. J. Lauhon, "Alternative catalysts for VSS growth of silicon and germanium nanowires," Journal of Materials Chemistry, 19, 849-857 (2009).
[18] X. Lu, T. Hanrath, K. P. Johnston, B. A. Korgel, "Growth of single crystal silicon nanowires in supercritical solution from tethered gold particles on a silicon substrate," Nano letters, 3, 93-99 (2003).
[19] N. Bhardwaj, S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnol Adv, 28, 325-347 (2010).
[20] S. Y. Chew, J. Wen, E. K. Yim, K. W. Leong, "Sustained release of proteins from electrospun biodegradable fibers," Biomacromolecules, 6, 2017-2024 (2005).
[21] D. Li, Y. Wang, Y. Xia, "Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays," Nano letters, 3, 1167-1171 (2003).
[22] D. Li, Y. Wang, Y. Xia, "Electrospinning nanofibers as uniaxially aligned arrays and layer‐by‐layer stacked films," Advanced Materials, 16, 361-366 (2004).
[23] D. Yang, B. Lu, Y. Zhao, X. Jiang, "Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning," Advanced Materials, 19, 3702-3706 (2007).
[24] C. S. Kumar, "Raman Spectroscopy for Nanomaterials Characterization," Springer, (2012).
[25] H. Wang, X. Han, X. Ou, C. S. Lee, X. Zhang, S. T. Lee, "Silicon nanowire based single-molecule SERS sensor," Nanoscale, 5, 8172-8176 (2013).
[26] A. M. Gabudean, D. Biro, S. Astilean, "Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods," Journal of Molecular Structure, 993, 420-424 (2011).
[27] J. Flipse, F. Bakker, A. Slachter, F. Dejene, B. van Wees, "Cooling and heating with electron spins: Observation of the spin Peltier effect," arXiv preprint arXiv:1109.6898, (2011).
[28] J. Chen, Z. Yan, L. Wu, "The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator," Journal of applied physics, 79, 8823-8828 (1996).
[29] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, 451, 168-171 (2008).
[30] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, 451, 163-167 (2008).
[31] M. C. Wingert, Z. C. Chen, E. Dechaumphai, J. Moon, J. H. Kim, J. Xiang, R. Chen, "Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime," Nano letters, 11, 5507-5513 (2011).
[32] N. Bhardwaj, S. C. Kundu, "Electrospinning: a fascinating fiber fabrication technique," Biotechnology advances, 28, 325-347 (2010).
[33] N. Fukata, K. Sato, M. Mitome, Y. Bando, T. Sekiguchi, M. Kirkham, J. I. Hong, Z. L. Wang, R. L. Snyder, "Doping and Raman characterization of boron and phosphorus atoms in germanium nanowires," ACS nano, 4, 3807-3816 (2010).
[34] N. Fukata, "Impurity doping in silicon nanowires," Advanced Materials, 21, 2829-2832 (2009).
[35] M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A. Zhernov, A. Inyushkin, A. Taldenkov, V. Ozhogin, K. Itoh, E. Haller, "Thermal conductivity of germanium crystals with different isotopic compositions," Physical Review B, 56, 9431 (1997).
[36] G. Kumar, G. Prasad, R. Pohl, "Experimental determinations of the Lorenz number," Journal of materials science, 28, 4261-4272 (1993).
[37] C. Kittel, "Introduction to Solid State Physics," Wiley, 8th edn, (2004).
[38] M. Holland, "Analysis of lattice thermal conductivity," Physical Review, 132, 2461 (1963).
[39] K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, A. Majumdar, "Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport," Nano letters, 10, 4341-4348 (2010).
[40] Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, C. Dames, "Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths," Nano letters, 11, 2206-2213 (2011).
[41] J. K. Yu, S. Mitrovic, D. Tham, J. Varghese, J. R. Heath, "Reduction of thermal conductivity in phononic nanomesh structures," Nature nanotechnology, 5, 718-721 (2010).
[42] S. K. Bux, R. G. Blair, P. K. Gogna, H. Lee, G. Chen, M. S. Dresselhaus, R. B. Kaner, J. P. Fleurial, "Nanostructured Bulk Silicon as an Effective Thermoelectric Material," Advanced Functional Materials, 19, 2445-2452 (2009).
[43] D. K. Brice, K. B. Winterbon, "Ion implantation range and energy deposition distributions," Ifi/Plenum, New York, (1975).
[44] A. Shakouri, "Recent Developments in Semiconductor Thermoelectric Physics and Materials," Annual Review of Materials Research, 41, 399-431 (2011).
[45] J. Kim, J. H. Bahk, J. Hwang, H. Kim, H. Park, W. Kim, "Thermoelectricity in semiconductor nanowires," physica status solidi (RRL) - Rapid Research Letters, 7, 767-780 (2013).
[46] A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, J. Wu, "Effects of point defects on thermal and thermoelectric properties of InN," Applied Physics Letters, 98, 012108 (2011).
[47] A. Dhawan, Y. Du, F. Yan, M. D. Gerhold, V. Misra, T. Vo-Dinh, "Methodologies for developing surface-enhanced Raman scattering (SERS) substrates for detection of chemical and biological molecules," Sensors Journal, IEEE, 10, 608-616 (2010).
[48] K. C. Bantz, A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S. H. Oh, C. L. Haynes, "Recent progress in SERS biosensing," Physical Chemistry Chemical Physics, 13, 11551-11567 (2011).
[49] A. Lahiri, R. Wen, S. Kuimalee, S. I. Kobayashi, H. Park, "One-step growth of needle and dendritic gold nanostructures on silicon for surface enhanced Raman scattering," CrystEngComm, 14, 1241 (2012).
[50] T. Wang, Z. Zhang, F. Liao, Q. Cai, Y. Li, S. T. Lee, M. Shao, "The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates," Scientific reports, 4, 4052 (2014).
[51] G. Meng, J. Paulose, D. R. Nelson, V. N. Manoharan, "Elastic instability of a crystal growing on a curved surface," Science, 343, 634-637 (2014).
[52] P. Etchegoin, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, J. C. Gallop, "Electromagnetic contribution to surface enhanced Raman scattering revisited," The Journal of Chemical Physics, 119, 5281 (2003).
[53] P. G. Etchegoin, E. C. Le Ru, "A perspective on single molecule SERS: current status and future challenges," Physical chemistry chemical physics : PCCP, 10, 6079-6089 (2008).
[54] X. Deng, G. B. Braun, S. Liu, P. F. Sciortino, B. Koefer, T. Tombler, M. Moskovits, "Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy," Nano letters, 10, 1780-1786 (2010).
[55] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," The Journal of Physical Chemistry B, 107, 668-677 (2003).
[56] B. K. Gu, M. K. Shin, K. W. Sohn, S. I. Kim, S. J. Kim, S. K. Kim, H. Lee, J. S. Park, "Direct fabrication of twisted nanofibers by electrospinning," Applied Physics Letters, 90, 263902 (2007).
[57] C. L. Zhang, K. P. Lv, N. Y. Hu, L. Yu, X. F. Ren, S. L. Liu, S. H. Yu, "Macroscopic-scale alignment of ultralong Ag nanowires in polymer nanofiber mat and their hierarchical structures by magnetic-field-assisted electrospinning," Small, 8, 2936-2940 (2012).
[58] R. Gunawidjaja, S. Peleshanko, H. Ko, V. V. Tsukruk, "Bimetallic Nanocobs: Decorating Silver Nanowires with Gold Nanoparticles," Advanced Materials, 20, 1544-1549 (2008).
[59] Y. Zhao, M. Shao, R. Que, Z. Zhang, "The surface-enhanced Raman scattering for monitoring histidine and tyrosine using silver vanadate nanoribbons as substrates," Journal of Physics and Chemistry of Solids, 74, 255-258 (2013).
[60] B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, "Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites," Nano letters, 12, 2077-2082 (2012).
[61] K. D. Osberg, M. Rycenga, G. R. Bourret, K. A. Brown, C. A. Mirkin, "Dispersible Surface‐Enhanced Raman Scattering Nanosheets," Advanced Materials, 24, 6065-6070 (2012).