| 研究生: |
邱垂隆 Chui-lung Chiu |
|---|---|
| 論文名稱: |
低氮氧化物氫燃燒器:紊流燃燒速度與化學螢光量測 A Low-NOx Hydrogen Burner: Turbulent Burning Velocities and Chemiluminescence Measurements |
| 指導教授: |
施聖洋
Shenqyang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 弱漩渦燃燒器 、氫燃燒 、紊流燃燒速度 、化學螢光法 、Abel轉換 |
| 外文關鍵詞: | Weak swirl jet burner, hydrogen combustion, turbulent burning velocities, chemiluminescence measurements, Abel inversion |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實作研究一低氮氧化物(NOX)氫燃燒器,採用先前Bédat & Cheng (1995)所提出之弱漩渦噴流燃燒器(weak swirl jet burner, WSJB)的設計概念,在燃燒器上游出口設置一弱噴流漩渦產生器(weak jet-swirl generator),它乃由四支20o向上斜角設計之切邊小噴嘴所構成,可在燃燒器出口下游處,形成一均勻擴張流場(diverging flow field),使原本生燈噴流預混火焰呈一穩定之碗狀預混火焰。並配合本實驗室先前所設計之快速混合裝置及貧油甲烷加氫紊流燃燒技術,由純甲烷燃氣開始,逐漸增加加氫量至純氫燃料,成功地建立一低氮氧化物氫燃燒器。實驗探討於不同甲烷/氫氣混合比例及純氫燃料條件下,燃燒器的穩定操作範圍及應用高速質點影像測速儀(particle image velocimetry, PIV)和氣體分析儀分別量測不同氫燃料比例之紊流燃燒速度(turbulent burning velocities, ST)和[NOX]排放物濃度。實驗結果顯示:添加氫氣可有效擴展甲烷貧油可燃極限並提高ST值;在當量比? = 0.4,所有加氫後之紊流預混火焰,其[NOX]值均低於5 ppm,甚至在純氫燃料時,[NOX]幾無任何可以量測之值。本研究更首次利用化學螢光法(chemiluminescence measurements)分析火焰特性,利用不同波段透鏡擷取火焰的輻射光,經由Abel 轉換技術,針對所接收化學螢光的波長範圍,分別為氫氧基(OH*)介於305 nm 與315 nm 之間、碳氫基(CH*)介於425 nm 至445 nm 之間、雙碳基(C2*)介於465 nm 至475nm 或505 nm 至520 nm 的範圍內作分析,以獲取火焰燃燒相關化學反應之資訊。上述研究成果對無碳氫燃燒技術之研發有重要之助益,因本燃燒器同時具備了可大幅度降低[NOX]之功能。
This thesis studies experimentally a low NOX hydrogen burner, adopting the design of the weak swirl-jet burner (WSJB) proposed by Bédat & Cheng (1995) with new modifications using a rapid mixing mechanism and the hydrogen doping lean premixed turbulent methane combustion technology previously developed by our laboratory led by professor Shy. The weak jet-swirl generator is equipped at the exit of the burner, composed of four small circumferential jets inclined at 20°, capable of generating a uniform diverging flow field in the downstream of the burner exit, so that the original Bunsen-type jet flame can be stabilized in a form of the bowl-shape flame with very low NOX emissions. Furthermore, the abovementioned new modifications are used to make the burner more compact and to develop a pure hydrogen burner by gradually increasing the amount of doping hydrogen. Specifically, the flame stable operation domain of the burner is studied using different volume ratios of lean CH4/H2 mixtures and finally to pure H2 mixtures. Turbulent burning velocities (ST) and [NOX] emissions are then measured by a high speed particle image velocimetry (PIV) and the gas analyzer, respectively. The result shows that by adding hydrogen the lean flammability limit of methane can be effectively extended and values of ST at any given values of equivalence ratios (?) and root-mean-square turbulent fluctuating velocities (u'') can be increased. All measured [NOX] values for CH4/H2 flame are found to be lower than 5 ppm, while for pure H2 flames at ? = 0.4 no measurable [NOX] can be found. This study also applies chemiluminescence measurements to analyze the flame characteristics, using appropriate lenses with different wavelengths. The Abel inversion is then applied to analyze these flame appropriate chemiluminescence data which should be related to various. The selected wavelengths for chemiluminescence species include hydroxyl (OH*) between 305 nm and 315 nm, hydrocarbon-based (CH*) ranging from 425 nm to 445 nm, and dual-carbon (C2*) from 465 nm to 475nm or from 505 nm to 520 nm. As a final remark, these results should be of help to the future development of carbon-free hydrogen combustion technology with extremely low NOX emissions.
參考文獻
[1] Drell, I. L. & Belles, F. E. 1957 Survey of hydrogen combustion properties. NACA Research Memorandum Report 1383.
[2] 黃逸芳 2006 氫燃燒器與低氮氧化物燃燒器實作研究。 碩士論文,國立中央大學機械工程研究所。
[3] 游智傑 2007 低氮氧化物燃燒器與加氫效應定量量測。 碩士論文,國立中央大學機械工程研究所。
[4] Bédat, B. & Cheng, R. K. 1995 Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 486-494.
[5] Cheng, R. K., Fable, S. A., Schmidt, D., Arellano, L. & Smith, K. O. 2001 Development of a low swirl injector concept for gas turbines. Proc. of International Joint Power Conference, New Orleans, Louisiana, USA, June 4-7.
[6] Yetter, R. A., Glassman, I. & Gabler, H. C. 2000 Asymmetric whirl combustion: a new low NOx approach. Proc. Combust. Inst. 28, 1265-1272.
[7] Bradley, D. 1992 How Fast Can We Burn? Proc. Combust. Inst. 24, 247-262.
[8] Aldredge, R. C., Vaezi, V. & Ronney, P. D. 1998 Premixed-flame propagation in turbulent Taylor-Couette flow. Combust. Flame 115, 395-405.
[9] Shy, S. S., Lee, E. I., Chang, N. W. & Yang, S. I. 2000a Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner. Proc. Combust. Inst. 28, 383-390.
[10] Shy, S. S., Lin, W. J. & Peng, K. Z. 2000b High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner. Proc. Combust. Inst. 28, 561-568.
[11] Shy, S. S., Lin, W. J. & Wei, J. C. 2000c An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. (London) A 456, 1997-2019.
[12] Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. & Cheng, R. K. 2000 Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359-366.
[13] Chigier, N. A. & Chervinsky, A., 1967 Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. 34, 443-451.
[14] Claypole, T. C. & Syred, N. 1980 The effect of swirl burner aerodynamics on NOx formation. Proc. Combust. Inst. 18, 81-89.
[15] Syred, N. & Beer, J. M. 1974 Combustion in swirling flows: a review. Combust. Flame 23, 143-201.
[16] Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. & Cheng, R. K. 2005 A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30, 2867-2874.
[17] Gupta, A.K., Lilley, D.G. & Syred, N. 1984 Swirl Flows. Abacus Press, Tunbridge Wells, England.
[18] Chen, R. H. & Driscoll, J. F. 1988 The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Proc. Combust. Inst. 22, 531-540.
[19]李國源 2002 停滯流燃氣噴注漩渦燃燒器之流場與火焰研究。 碩士論文,國立成功大學航太與太空工程研究所。
[20] Chen, C. K., Lau., K. S., Chin, W. K. & Cheng, R. K. 1992 Freely propagation open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511-518.
[21] Cheng, R. K. 1995 Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1-14.
[22] Yegian, D. T. & Cheng, R. K. 1998 Development of lean premixed low-swirl burner for low NOx practical application. Combust. Sci. Tech. 139, 207-227.
[23] Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. & Loftus, P. 2000 Scaling and development of low-swirl burners for low emission furnaces and boilers. Proc. Combust. Inst. 28, 1305–1313.
[24] Cho, P., Law, C. K., Hertzbeqrg, J. H. & Cheng, R. K. 1986 Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493-1499.
[25] Mathiak, J., Heinzel, A., Roes, J., Kalk, T., Kraus, H. & Brandt, H. 2004 Coupling of a 2.5 kW steam reformer with a 1 kW PEM fuel cell. J. Power Sources 131, 112-119.
[26] Heinzel, A., Roes, J. & Brandt, H. 2005 Increasing the electric efficiency of a fuel cell system by recirculating the anodic offgas. J. Power Sources 145, 312-318.
[27]日本富士電池,燃料電池發電系統。http://www.fesys.co.jp/sougou/seihin/p27/pdf/K106b.pdf
[28] Drift, A. V. D., Yjeng, S. L., Beckers, G. J. J. & Beesteheerde, J. 1996 Low-NOx hydrogen burner. Int. J. Hydrogen Energ. 21, No. 6, 445-449.
[29] Jeong Y. K., C.H. Jeon and Y.J. Chang,”Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4-air flames”, Experimental Thermal and Fluid Science, vol. 30, pp 663-673, 2006.
[30] Bowman, C. T. 1992 Control of combustion-generated nitrogen oxide emission: technology driven by regulation. Proc. Combust. Inst. 24, 859-878.
[31] 尹偉光 1996 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展。 碩士論文,國立中央大學機械工程研究所。
[32] 林孟良 1998 氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場。 碩士論文,國立中央大學機械工程研究所。
[33] 魏建樟 1999 應用雷射斷層攝影術探討預混紊焰傳播。 碩士論文,國立中央大學機械工程研究所。
[34] 林文基 1999 甲烷與丙烷預混紊流燃燒速度的量測。 碩士論文,國立中央大學機械工程研究所。
[35] 楊授印 Private discussion
[36] Lawn C. J.,”Distributions of instantaneous heat release by the cross-correlation of chemiluminescent emissions”, Combust. Flame, vol. 123, pp 227-240, 2000.
[37] Smith G. P., J. Luque, C. Park, J. B. Jeffries and D. R. Crosley, “Low pressure determinations of rate constants for OH(A) and CH(A) chemiluminescence”, Combust. Flame, vol. 131, pp 59-69, 2002.
[38] Leo M. D., A. Saveliev, L. A. Kennedy and S. A. Zelepouga, “OH and CH luminescence in opposed flow methane oxy-flames” , Combust. Flame, vol. 149, pp 435-447, 2007.
[39] Gaydon A. G., The Spectroscopy of Flame, 2nd ed. John Wiley & Sons, New York, 1974.