跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝宇辰
Yu-Chen Hsieh
論文名稱: 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
The Study of Low-temperature Processed Perovskite Solar Cell by Using Ca/Ti Compounds as Mesoporous layer
指導教授: 詹佳樺
Chia-Hua Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 鈣鈦礦太陽能電池鈣/鈦複合物低溫製程
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們透過改良實驗室既有的合成技術製備Ca/Ti複合物作為電池元件中的介孔層,再藉由對實驗參數的調整以達到最佳的電池元件表現。我們以三種不同的比例(Ca:Ti)進行合成,利用產物組成的不同,對材料間的能階匹配性進行調整;其中,以1:2(Ca:Ti)比例合成的Ca/Ti複合物應用於電池元件具有最佳的能階匹配性,因此電池元件表現出最高的短路電流(Jsc)以及能量轉換效率(PCE)。更佳的能階匹配性能夠將電子更迅速地傳遞出去,減少因發生電子-電洞再復合所造成的損失。
    此外,我們以低溫製程來製作鈣鈦礦太陽能電池元件,不僅能夠達到節能減碳的目的,還可以降低實驗的成本;並且希望未來能夠應用於軟性基板上。在材料的部分,我們則是以廢棄的蛋殼作為合成時鈣元素的來源,以達到回收再利用的目的。
    最後,電池元件效率的量測結果,以TiO2(P90)作為介孔層的鈣鈦礦電池元件作為本實驗之對照組的標準試片,最佳電池元件表現達到Voc=1.02 V,Jsc=18.85 mA/cm2,FF=0.77,PCE=14.60 % ;而實際將所合成之Ca/Ti複合物應用於鈣鈦礦電池元件的介孔層,最佳電池元件表現則是達到Voc=1.02 V,Jsc=22.33 mA/cm2,FF=0.78,PCE=17.60 %。將Ca/Ti複合物應用於鈣鈦礦電池元件的介孔層,能夠使電池元件在Jsc以及PCE上有所提升,而在PCE上的增益達19.7%。


    In this study, we have successfully synthesized the Ca/Ti compounds as the mesoporous layer for perovskite solar cells. Besides, we further synthesis Ca/Ti compounds with different Ca/Ti ratio to obtain the energy-level matching between the compact layer, the active layer and the mesoporous layer of the perovskite solar cell.
    We also develop a low-temperature process to fabricate perovskite solar cells without sintering at a temperature of 500 ℃ to achieve the purpose of energy conservation. Eventually, the whole fabrication process of the perovskite solar cells can be done at a heating temperature lower than 180 ℃ which can realize the application of the flexible solar cell in the future.
    Moreover, as the band gap of the Ca/Ti compounds is 3.47 eV, the short-circuit current density (Jsc) of the perovskite solar cell will improved due to the reduction of the electrons and holes recombination. In comparison with standard perovskite solar cells, the perovskite solar cells with the optimized Ca/Ti compounds as the mesoporous layer can effectively improve the Jsc from 18.85 to 22.33mA/cm2, and enhance the power conversion efficiency (PCE) from 14.70 % to 17.60 %.

    摘要 i Abstract ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1前言 1 1.2太陽能電池的發展 2 1.3太陽能電池基本原理 3 1.4鈣鈦礦簡介 4 1.5鈣鈦礦太陽能電池文獻回顧 6 1.5.1鈣鈦礦太陽能電池的起源與早期發展 6 1.5.2鈣鈦礦太陽能電池各層材料與製程之相關研究 12 1.5.3鈣鈦礦太陽能電池低溫製程應用於軟性基板與反式結構之相關研究 19 1.6研究動機 24 第二章 實驗方法 26 2.1實驗藥品與使用儀器 26 2.1.1藥品 26 2.1.2實驗所使用之儀器清單 27 2.2鈣鈦礦太陽能電池之材料製備 28 2.2.1緻密層材料:二氧化鈦(TiO2)之配製 28 2.2.2介孔層材料:二氧化鈦(TiO2,P90)之配製 28 2.2.3介層材料:Ca/ Ti複合物之合成 28 2.2.4甲基胺碘(CH3NH3I)合成 29 2.2.5鈣鈦礦層材料:甲基胺鉛碘(CH3NH3 PbI3)前驅溶液配製 29 2.2.6電洞傳輸層材料:Spiro-OMeTAD溶液配製 29 2.3鈣鈦礦太陽能電池之元件製作 30 2.3.1 FTO玻璃基板清洗 30 2.3.2 FTO玻璃基板UV-Ozone表面處理 30 2.3.3緻密層材料:二氧化鈦(TiO2)塗佈 30 2.3.4介孔層材料:二氧化鈦(TiO2,P90)塗佈 30 2.3.5介孔層材料:Ca/Ti複合物塗佈 31 2.3.6鈣鈦礦層:甲基胺鉛碘塗佈 31 2.3.7電洞傳輸層:Spiro-OMeTAD塗佈 31 2.3.8銀電極蒸鍍 31 第三章 結果與討論 34 3.1實驗合成材料之特性分析 34 3.1.1緻密層材料—二氧化鈦之合成結果 34 3.1.2介孔層材料—Ca/Ti複合物與二氧化鈦(P90)合成結果 34 3.1.3鈣鈦礦主動層材料—甲基胺鉛碘(CH3NH3PbI3)之合成結果 42 3.1.4鈣鈦礦主動層材料—甲基胺鉛碘(CH3NH3PbI3)之塗佈結果 44 3.2鈣鈦礦太陽能電池元件之光電特性 47 3.2.1 不同比例Ca/Ti複合物的能帶結構分析結果 47 3.2.2 Ca/Ti複合物應用於電池元件介孔層之結果 52 第四章 結論 58 第五章 參考文獻 59

    1. 顧鴻壽(2012)。太陽能電池元件導論¬¬¬¬¬¬-材料、元件、製程、系統。新北市:全威圖書
    2. S.Sharma, K.K.Jain, A.Sharma, “Solar Cells: In Research and Applications-A Review”, Mater. Sci. Appl., 1145-1155(2015)
    3. 蔡進譯(2005)。超高效率太陽電池-從愛因斯坦的光電效應談起。物理雙月刊(廿七卷五期),701-719
    4. Z. Cheng, J. Lin, “Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering”, CrystEngComm, 2646-2662(2010)
    5. B. O'Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 737-740(1991)
    6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, JACS, 6050-6051(2009)
    7. J.H Im, C.R. Lee, J.W. Lee, S,W, Park and N,G, Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale, 4088-4093(2011)
    8. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R.H. Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Scientific Reports , 6, 591 (2012)
    9. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites”, Sci.Rep., 2, 643-647(2012)
    10. J. Burschka, N. Pellet, S.J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316-319(2013)
    11. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.II. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nat. Mater., 897-903(2014)
    12. G.E. Eperon, S.D. Stranks , C. Menelaou , M.B. Johnston , L.M. Herz and H.J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”, Energy Environ. Sci., 982-988(2014)
    13. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.II. Seok, “Compositional engineering of perovskite materials for high-performance solar cells”, Nature 517, 476-480 (2015)
    14. Y. Shi, Y. Xing, Y. Li, Q. Dong, K. Wang, Y. Du, X. Bai, S. Wang, Z. Chen, T. Ma, “CH3NH3PbI3 and CH3NH3PbI3−xClx in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture”, J. Phys. Chem. C, 119 (28), 15868–15873(2015)
    15. M. Liu, M.B. Johnston, H.J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature 501, 395–398 (2013)
    16. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells”, Energy Environ. Sci., 6, 1739-1743(2013)
    17. D. Liu, T.L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nat.Photonics.,8, 133–138 (2014)
    18. X. Xu, H. Zhang, J. Shi, J. Dong, Y. Luo, D. Li, Q. Meng, “Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer”, J. Mater.Chem.A., 3, 19288-19293(2015)
    19. J. Song, E. Zheng, X.F. Wang,W. Tian, T. Miyasaka, “Low-temperature-processed ZnO–SnO2 nanocomposite for efficient planar perovskite solar cells”, Sol. Energ. Mat. Sol. Cells, 144, 623-630(2016)
    20. G.S, Han, H.S. Chung, B.J. Kim, D.H Kim, J.W. Lee, B.S. Swain, K. Mahmood, J.S. Yoo, N.G. Park, J.H. Lee, H. S. Jung, “Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films”, J. Mater. Chem. A,, 3, 9160-9164(2015)
    21. R.S. Sanchez, E.M. Marza, “Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells”, Sol. Energ. Mat. Sol. Cells, 158, 189-194(2016)
    22. H.W Chen, T.Y. Huang, T.H. Chang, Y. Sanehira, C.W. Kung, C.W. Chu, M. Ikegami, T. Miyasaka, K.C. Ho, “Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers”, Scientific Reports, 6, 34319 (2016)
    23. Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, F. Ye, M. Yin, P. Zhang, L. Han, “Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells”, Appl. Phys. Express, 7, 052301 (2014)
    24. D. Yang, R. Yang, J. Zhang, Z. Yang, S.F. Liu, C. Li, “High efficiency flexible perovskite solar cells using superior low temperature TiO2”, Energy Environ. Sci., 8, 3208-3214(2015)
    25. Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, N.D. Marco, P. Sun, Z. Zhao, Y.B. Cheng, Y. Yang, “Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells”, ACS Appl. Mater. Interfaces, 8(17), 11076–11083(2016)
    26. J. Seo, S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.Il. Seok, “Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells”, Energy Environ. Sci., 7, 2642(2014)
    27. K. Hwang, Y.S. Jung, Y.J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.Y. Kim, D. Vak, “Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells”, Adv. Mater., DOI: 10.1002/adma.201404598, 2015
    28. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, “Roll-to-roll fabrication of polymer solar cells”, Mater. Today, 15, 36-49(2012)
    29. B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han, J.S. Hong, K. Mahmood, T.K. Ahn, Y.C. Joo, K.S. Hong, N.G. Park, S. Lee, H.S. Jung, “Highly efficient and bending durable perovskite solar cells: toward a wearable power source”, Energy Environ. Sci., 8, 916-921(2015)
    30. H. Yoon, S.M. Kang, J.K. Lee, M. Choi, “Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency”, Energy Environ. Sci., 9, 2262-2266(2016)
    31. Y. Hou, J. Yang, Q. Jiang, W. Li, Z. Zhou, X. Li, S. Zhou,“Enhancement of photovoltaic performance of perovskite solar cells by modification of the interface between the perovskite and mesoporous TiO2 film”, Sol. Energ. Mat. Sol. Cells, 155, 101-107(2016)
    32. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, “Phase Characterization of TiO2 Powder by XRD and TEM”, Kasetsart J. (Nat. Sci.), 42, 357 - 361 (2008)
    33. X. Zhang, W. Liao, W. Mu, D. Zheng, Y. Zhou, B. Xue, W. Liu, Z. Lina, Y. Deng, “Rational design of hybrid dye-sensitized solar cells composed of double-layered photoanodes with enhanced power conversion efficiency”, J. Mater. Chem. A, 2, 11035( 2014)
    34. 林育葳, 「以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究」, 國立中央大學, 碩士倫文, 民國105年

    QR CODE
    :::