| 研究生: |
馮連挺 Lain-Ting Feng |
|---|---|
| 論文名稱: |
用於長波紅外熱成像之公分等級變焦超穎透鏡波動分析之研究 Centimeter-scaled zoom metalens for wave analysis in long wavelength infrared imaging |
| 指導教授: |
王智明
Chih-Ming Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 超穎透鏡 、變焦 |
| 外文關鍵詞: | metalens, zoom |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著長波紅外熱成像技術在高解析度應用中的需求日益增加,傳統熱影
像光學系統面臨結構複雜、體積龐大及成本高昂等挑戰。感測器解析度的提
升對光學系統提出了更高的要求。特別是大口徑透鏡的設計,對於提高影像
品質及滿足高像素數的需求至關重要。本研究實現了一種基於 Moiré 效應
的公分等級變焦超穎透鏡。此透鏡僅需透過兩片超穎透鏡的相對旋轉即可
實現焦距連續調整,具備結構簡單、操作靈活且不依賴其他光學元件即可成
像的優勢。
在模擬分析中,採用波動傳遞方法研究透鏡間距及對位誤差對光學性能
的影響。結果顯示,精準對位是確保透鏡性能的關鍵,微米級的對位誤差即
可能導致成像品質顯著下降。製程方面,本研究成功將全片矽晶圓製程技術
應用於直徑達 1 公分的超穎透鏡製造,克服了奈微米結構在大面積製程中
的挑戰。在實驗量測中,即使在對位誤差不可完全控制的情況下,仍能拍攝
到不同倍率的影像,並實現1到2.75倍的變焦能力,且在旋轉角度範圍內
具備穩定的光學性能。
As the demand for high-resolution applications in long-wave infrared thermal imaging continues to grow, traditional thermal imaging optical systems face challenges such as structural complexity, large size, and high costs. Improvements in sensor resolution impose higher requirements on optical systems, particularly in designing large-aperture lenses, which are critical for enhancing image quality and meeting the demands of high pixel counts. This study demonstrates a centimeter-scale zoom metalens based on the Moiré effect. This lens achieves continuous focal length adjustment through the relative rotation of two metalenses,
featuring a simple structure, flexible operation, and the ability to form images without relying on additional optical components.
In the simulation analysis, the wave propagation method was employed to investigate the effects of lens spacing and alignment errors on optical performance. The results indicate that precise alignment is essential to ensure lens performance, as micron-level alignment errors can significantly degrade imaging quality. On the fabrication side, this study successfully applied full-wafer silicon-based manufacturing techniques to produce a metalens with a diameter of 1 centimeter, overcoming the challenges associated with fabricating nanostructures over large areas. In experimental measurements, even under conditions where alignment errors could not be fully controlled, images with varying magnifications were successfully captured. The lens achieved a zoom capability ranging from 1 to 2.75 times, demonstrating stable optical performance across the range of rotation angles.
[1] Mowafy, K., T. El-Dessouky, and M. Medhat, Design of IR zoom lens system for long-range detection in uncooled LWIR camera. Journal of Optics, 2022. 52(1): p. 281-289.
[2] Fan, Q., et al., High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Opt Lett, 2018. 43(24): p. 6005-6008.
[3] Fu, R., et al., Reconfigurable step-zoom metalens without optical and mechanical compensations. Opt Express, 2019. 27(9): p. 12221-12230.
[4] Huang, P.S., et al., Varifocal Metalenses: Harnessing Polarization-Dependent Superposition for Continuous Focal Length Control. Nano Lett, 2023. 23(22): p. 10432-10440.
[5] Zhang, J., et al., A Fully Metaoptical Zoom Lens with a Wide Range. Nano Lett, 2024. 24(16): p. 4893-4899
[6] Shi, Y., et al., Ultra-thin, zoom capable, flexible metalenses with high focusing efficiency and large numerical aperture. Nanophotonics, 2024. 13(8): p. 1339-1349.
[7] Colburn, S., A. Zhan, and A. Majumdar, Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 2018. 5(7): p. 825-831.
[8] Iwami, K., et al., Demonstration of focal length tuning by rotational varifocal moire metalens in an ir-A wavelength. Opt Express, 2020. 28(24): p. 35602-35614.
[9] Chen, Y.-C., et al., Broadband achromatic thermal metalens with a wide field of view based on wafer-level monolithic processes. Applied Physics Letters, 2024. 125(5): p. 051702.
[10] Hugonin, J.P. and P. Lalanne, Reticolo software for grating analysis. arXiv preprint arXiv:2101.00901, 2021.
[11] Bernet, S. and M. Ritsch-Marte, Adjustable refractive power from diffractive moiré elements. Applied optics, 2008. 47(21): p. 3722-3730.
[12] Ogawa, C., et al., Rotational varifocal moire metalens made of single-crystal silicon meta-atoms for visible wavelengths. Nanophotonics, 2022. 11(9): p. 1941-1948.
[13] Teixeira, F.L., et al., Finite-difference time-domain methods. Nature Reviews Methods Primers, 2023. 3(1): p. 75.
[14] Chu, H., et al., Generalized Rayleigh-Sommerfeld Diffraction Theory for Metasurface-Modulating Paraxial and Non-Paraxial Near-Field Pattern Estimation. IEEE Access, 2019. 7: p. 57642-57650.
[15] Wei, Y., et al., Compact Optical Polarization‐Insensitive Zoom Metalens Doublet. Advanced Optical Materials, 2020. 8(13): p. 2000142.