| 研究生: |
邱啟宗 Chi-Tsung Chiu |
|---|---|
| 論文名稱: |
可資源共享之平行分散處理系統的最大吞吐量控制策略 |
| 指導教授: |
洪英超
Ying-Chao Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 資源共享 、隨機網路 、控制策略 、吞吐量 、平行分散處理系統 |
| 外文關鍵詞: | control policy, throughput, queueing, resource sharing, parallel and distributed processing system, stochastic network |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇文章我們探討具有M個佇列(queue)以及N個伺服器(server)的平行分散處理系統(Parallel and Distributed Processing System),其中每一個伺服器皆能配置給不同的佇列以達到資源共享(resource sharing)的目的。此系統捕捉到現實生活中許多網路架構的特性,比如資訊傳輸(communications)、電腦網路(computer networks)等。我們藉由系統的穩定條件(stability conditions)和穩定區域(stability region)來比較傳統的控制策略(control policies)以及數種不同動態策略(dynamic policies)之間的差異性,其主要的目的是探討隨機網路系統(stochastic network system)中最基本的表現測量值(performance measurement)─吞吐量(throughput)。本文中我們也提出一新的控制策略─“最大加權停留時間優先策略”(Largest Weighted Delay First Policy),並證明在一般的假設之下,此控制策略可維持系統的穩定性並讓系統的吞吐量為最大,其證明的方式主要是以偏離分析(drift analysis)為基礎。
None
[1] Armony, M. ; Bambos, N. “Queueing Dynamics and Maximal Throughput Scheduling in Switched Processing Systems”, Technical Report SU NETLAB-2001-09/01, Engineering library, Stanford University.
[2] Bell, S. L. ; Williams, R. J. “Dynamic Scheduling of a System with Two Parallel Servers in Heavy Traffic with Resource Pooling: Asymptotic Optimality of A Threshold Policy”, The Annals of Applied Probability, 2001, Vol. 11, No. 3, pp.608-649.
[3] Dai, J. G. “On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models”, Annals of Applied Probability, Vol. 5, 1995, pp.49-77.
[4] Hajek, B. “Hitting-time and Occupation-time Bounds Implied By Drift Analysis with Applications”, Adv. Appl. Prob. 14, pp.501-525.
[5] Hung, Y. C. “Modeling and Analysis of Stochastic Networks with Shared Resource”, Ph.D. Thesis, The University of Michigan, 2002.
[6] Hung, Y. C. ; Michailidis, G. ; Bingham, D. R. “Developing Efficient Simulation Methodology for Complex Queueing Networks”, Proceedings of the Winder Simulation Conference 2003, New Orleans, pp.152-159.
[7] Kelly, F. P. “Reversibility and Stochastic Networks”, 1979.
[8] Leonaridi, E. ; Mellia, M. ; Neri, F. ; Marsan, M. A. “On the Stability of Input-Queued Switches with Speed-up”, IEEE, Transactions on Networking, 9(1), 2001, pp.104-118.
[9] Mekkittikul, A. ; McKeown, N. “A Starvation-free Algorithm For Achieving 100% Throughput in an Input-Queued Switch”, Proc. of ICCCN’96, October, 1996, pp.226-231.
[10] Meyn, S. P. “Stability and Optimization of Queueing Networks and Their Fluid models”, Proceeding of the Summer Seminar on “The Mathematics of Stochastic Manufacturing Systems”, 1996, pp.17-21.
[11] Pemantle, R. ; Rosenthal, J. S. “Moment conditions for a sequence with negative drift to be uniformly bounded in Lr ”, Stochastic Processes and their Applications 82, 1999, pp.143-155.
[12] Ross , S. “Stochastic Processes” , 2nd edition, Chapter 3, pp.98-104.
[13] Stolyar, A. L. “Control of End-To-End Delay Tails in a Multiclass Network: LWDF Discipline Optimality”, The Annals of Applied Probability, 2003. Vol. 13. No. 3. pp.1151-1206.
[14] Walrand, J. “Introduction to queueing networks”, Englewood Cliffs, Prentice Hall” 1988.