| 研究生: |
鄭長文 Chang-wen Cheng |
|---|---|
| 論文名稱: |
台灣自主電離層數值模式於 單頻GPS二次差分定位之應用 The application of using Taiwan ionospheric model in double-difference positioning in single-frequency GPS data |
| 指導教授: |
蔡龍治
Lung-Chih Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 台灣自主電離層數值模式 、差分定位法 |
| 外文關鍵詞: | TWIM, DGPS |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
GPS衛星播送的訊號在經過電離層時,會使得其中的電碼訊號造成延遲,對於GPS衛星定位有極大的影響,本論文特別使用台灣自主電離層數值模式(TWIM)來作電離層延遲修正。在測站與參考站接收到的單頻GPS電碼訊號資料,將電離層延遲以及其他偏差修正後,經由差分定位法(DGPS)運算可達到次公尺等級的定位精準度。本論文的宗旨即是將TWIM模式與DGPS定位法作整合,推廣至Android作業系統平台的應用程式(APP),來呈現出本論文研究的概念性應用。
本篇論文研究的定位成果,將藉由定位方法的比較來呈現,並將延伸分析DGPS定位法裡測站與參考站的基線長度對定位殘差的影響。
When GPS signals pass through the ionosphere, it would produce signal delay in code measurements. This ionospheric delay would affect the GPS positioning results. In this study, a single-frequency Novatel receiver has been setup as a test station, and the ionospheric delay has been simulated and corrected using the TaiWan Ionospheric Model(TWIM). After the ionospheric delays are simulated and corrected, a differential GPS(DGPS) technique could be applied for positioning and approach a sub-meter positioning accuracy. We also developed an Android APP tool and promote real-time dGPS positioning after correcting ionospheric delay based on the TWIM. In the thesis, the results would be demonstrated and evaluated by comparisons of different positioning methods. Besides, it would show positioning accuracy related to baseline length between the test and reference stations.
[1]Tsai, L. C., Liu, C. H., Hsiao, T. Y., and Huang, J. Y., 2009. A near real-time phenomenological model of ionospheric electron density based on GPS radio occultation data. Radio Science, 44, RS5002, pp. 1–10. doi:10.1029/2009RS004154
[2] Macalalad., E. P., Tsai, L. C., Wu, J., Liu, C. H., 2013, Application of the TaiWan Ionospheric Model to single-frequency ionospheric delay corrections for GPS positioning. GPS Solutions, Volume 17, Issue 3, pp. 337-346
[3]Matsushita, T., and Tanaka, T., 2010, Improving measurement accuracy of long baseline differential GPS, SICE Journal of Control, Measurement, and System Integration, Volume 3, No. 3, pp. 157-163
[4]Tsai, L. C., 2008. Ionospheric electron density specification and modelling based on FS3/COSMIC & LEO satellite beacon data., ISAR-NCU.
[5]Macalalad., E. P., Wu, J., and Tsai, L. C., 2011, Ionospheric delay correction using the TaiWan Ionospheric Model for single-frequency GPS receiver, Asian Conference on Remote Sensing.
[6]Kelley, M. C.,1989 The earth's ionosphere: plasma physics and electrodynamics, Academic Press, Inc.
[7]Seeber, G., 1993. Satellite Geodesy: Foundations, Methods & Applications. Walter de Gruyter, Berlin, New York
[8]Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2008. GNSS–Global Navigation Satellite Systems, 5th edn., Springer, New York .
[9]Leick, A., 2004. GPS Satellite Surveying, 3rd edn., John Wiley & Sons, Inc., Hoboken.
[10]黃俊穎,2009,運用臺灣自主電離層數值模式研究電離層赤道異常現象,,碩士論文,國立中央大學太空科學研究所。
[11]巫明哲,2010,利用電離層模式改善單頻GPS精密單點定位,碩士論文,國立中央大學土木工程學系。
[12]孫翊騰,2010。適用於電離層高活動期間之現代化GPS 長基線計算方法,碩士論文,國立成功大學測量及空間資訊學系。
[13]陳冠宏,2011,改良式模稜函數法應用於GNSS相對定位研究,碩士論文,國立中央大學土木工程學系。
[14]吳究,2011,衛星大地測量,課程講義,國立中央大學太空及遙測研究中心及工學院土木工程學系空間資訊組。