| 研究生: |
張澤穆 Ze-Mu Chang |
|---|---|
| 論文名稱: |
應用於室內極高速傳輸無線傳輸系統之 Design and Evaluation of Gigabit Indoor Wireless Communication Systems |
| 指導教授: |
蔡佩芸
Pei-Yun Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 收發機 、接收機 、高速傳輸 、無線區域網路 、基頻 、無線通訊 |
| 外文關鍵詞: | gigabit transmission, baseband receiver, MIMO-OFDM, high throughput, Wireless LAN |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的生活中,由於數位家庭的崛起,造成電腦、家電廠商無不爭相投入搶攻家庭娛樂結合數位生活這塊市場大餅,全力促使自家產品成為消費者家中的核心「平台」。由於傳輸高畫質的影音服務需要極高的傳輸率(gigabit),以目前已普及的無線通訊規格並無法支援,所以還是以有線(HDMI)的為主。為了支援這些服務,各無線通訊標準無不朝著高傳輸率來發展,希望能以無線取代有線,透過無線通訊打破空間的規範,使得在家裡的任何地方都能享受到數位生活的方便,並美化家庭的環境。
本論文在於實現無線傳輸模組,基於IEEE 802.11n的系統上來訂立一個新規格來達到傳送高畫質影像的速度需求。此無線通訊基頻收發機將以多輸入多輸出之正交分頻多工(MIMO-OFDM)來實現,操作在lower UNII band,最多使用160MHz的頻寬,再搭配四根傳輸天線及四根接收天線的傳輸率最高可達2.5Gbps。發送端的部分會有256點及512點前置符元的設計,此設計有考量到PAPR和使接收段的訊號偵測及同步的部分易於達成。接收端的部分則有三個主要的任務,粗略同步、殘餘CFO估測及補償還有通道估測與多輸入多輸出偵測。粗略同步在於得到正確的符元邊界以得到精確的FFT的window還有CFO粗估。在訊號進入頻域後繼續的追蹤殘餘的CFO並補償,補償完後就可以開始偵測訊號以重新取回資料。以上的任務在系統模擬的部分均可得到我們所提出的方法對於整體效能有大幅度的提升。
This thesis presents a MIMO-OFDM baseband transceiver design for indoor gigabit wireless communication systems. The proposed system uses 5 GHz carrier frequency with bandwidth up to 160 MHz. Both the transmitter and the receiver support 4 antennas. At the receiver, we design symbol timing detector, carrier frequency offset first acquisition and subsequent tracking mechanisms, channel estimation and MIMO detection. Simulation results show that the proposed symbol timing detection algorithm is more precise than the conventional algorithm. The CFO tracking mechanism also helps to improve the severe degradation in MIMO detection due to the residual synchronization error. In addition, by exploiting low-correlated spatial diversity, this system can combat highly frequency-selective fading channels for wide-band applications. We thus achieve satisfying system performance with 64-QAM constellation for 2.5-Gbps transmission rate.
[1.1] Part15.3:Wireless Medium Access Control(MAC) and Physical Layer(PHY)
Specifications for High Rate Wireless Personal Area Networks (WPANs),
802.15.3c_2009
[1.2] http://www.wirelesshd.org/
[1.3] http://grouper.ieee.org/groups/802/11/Reports/tgac_update.htm
[1.4] http://www.whdi.org/
[2.1] http://en.wikipedia.org/wiki/U-NII
[2.2] IEEE P802.11n/D2.00 Draft STANDARD for Wireless LAN Medium Access
Control(MAC) and Physical Layer(PHY) Specifications : Enhancements for High Throughput.
[2.3] D. Wang, G. Zhu, Z. Hu, “Optimal Pilots in Frequency Domain for Channel
Estimation in MIMO-OFDM Systems in Mobile Wireless Channels,” IEEE VTC 2004-Spring, pp. 608 – 612.
[3.1] IEEE 802.11 TGn channel model special committee, “TGn Channel Models for IEEE
802.11 WLANs”, IEEE doc.: IEEE 802.11-03/940r4, May 2004.
[3.2] A.A.M Saleh and R.A. Valenzuela, “A statistical model for indoor multipath
propagation,” JSAC, vol. 5, 1987, pp.128-137.
[3.3] Q.H. Spencer, et al., “Modeling the statistical time and angle of arrival characteristics
of an indoor environment,” IEEE J. Select. Areas Commun., vol. 18, no. 3, March
2000, pp. 347-360.
[3.4] R.J-M. Cramer, R.A. Scholtz, and M.Z. Win, “Evaluation of an ultra-wide-band
propagation channel,” IEEE Trans. Antennas Propagat., vol. 50, no.5 May 2002, pp. 561-570
[4.1] C. C. Chang, C. H. Su, J. M. Wu, “A low power baseband OFDM receiver IC for fixed
WiMAX communication,” IEEE A-SSCC, 2007, pp. 292-29.
[4.2] C. Hsiao, C. Y. Chen, T. D. Chiueh, “Design of a dual-mode baseband receiver for
802.11n and 802.16e MIMO OFDM/OFDMA,” VLSI-DAT 2009, pp. 331-33.
[4.3] T. H. Kim and I. C. Park, “Low-power and high-accurate synchronization for IEEE
802.16d Systems,” IEEE Trans. on VLSI Systems, vol. 16, pp. 1620-1630, Dec. 2008.
[4.4] Ting-Jung Liang; Xin Li; Irmer, R.; Fettweis, G.; “Synchronization in OFDM-based
WLAN with transmit and receive diversities, “IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 2005. Volume 2, 11-14 Sept.2005 Page(s):740-744
[4.5] A. Burg, and et al., “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE JSSCC. Vol. 40, pp. 1566-1577, Jul. 2005.