| 研究生: |
蔡宜蓁 Yee-Chen Tsai |
|---|---|
| 論文名稱: | Structural Evolution of Metal-Organic Frameworks - From Primary Crystals to Spherical Agglomerates |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 動力學 、金屬有機結構材料 、球晶 |
| 外文關鍵詞: | Kinetics, Metal-Organic Frameworks, Spherical Agglomeration |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文展示了金屬有機結構材料[In(OH)bdc]n從分子合成到結晶,及聚集成球狀顆粒的結構演化。此材料於三種溫度下合成,並比較其產物的分子結構、化學鍵結、顆粒分佈、孔洞大小、吸附能力及感測特性,在結晶成長曲線中我們發現了在金屬有機結構材料中從未報導過的二次結晶,儘管三個溫度的結晶曲線皆擁有相似的第二階段結晶機制和二次結晶,但80oC第一階段中,擴散控制帶走非晶相分子,而導致在80oC合成的金屬有機結構材料擁有最佳的結晶度。在吸脫附曲線上,只有在60oC合成的金屬有機結構材料有明顯的遲滯現象,代表了同時存在的微孔及中孔結構,而80oC的材料因有著微孔結構和最佳的結晶度,所以擁有最高的吸附比表面積。另外在光激光感測上三種溫度合成的樣品皆展現了相同的吸附性質,由於合成參數僅影響產品顆粒大小分布、吸附行為及孔洞結構,不太影響材料結晶結構及氣體分子感測性質,有利於參數最佳化的調整。此結晶成長曲線可作為合成參數和最終產品性質的關係依據,搭配監控設備可達到於反應過程中調整參數以獲得所需產品性質。
另一方面,金屬有機結構材料的球狀聚合在正庚烷/乙醇/聚乙二醇的系統中進行,且材料結晶結構不受樣品負載量影響。但較低的活化溫度(150oC)無法完全去除孔洞中的正庚烷分子,氣體吸附量大大降低,聚乙二醇的包覆更加降低其吸附量,但感測功能依然不變。大幅降低的卡爾指數代表其增加的粉體流動性,有利於未來填充、壓錠等製程。
The aim of this thesis was to show the structural evolution of [In(OH)bdc]n crystals from molecular synthesis to primary crystals, which then aggregated into spherical agglomerates. The synthesis of [In(OH)bdc]n crystals were conducted at three different temperatures 60o, 80o and 100oC. The crystal growth curves can be deduced by UV/vis spectroscopy. The crystallite structure, chemical bonding, agglomerate size distribution, pore size, adsorptive capability, and sensing characteristics were illustrated and compared among the products synthesized at three different temperatures. From the crystal growth curves, the secondary crystallization of MOFs was discovered which had not been reported before. The [In(OH)bdc]n crystals synthesized at 80oC were the best based on their superior adsorption surface areas and crystallinity. It was because the diffusion control taking place during the initial period of nucleation had removed the amorphous molecules and led to the best crystallinity. Only [In(OH)bdc]n crystals synthesized at 60oC showed clear hysteresis indicating the existence of both micro- and mesopores. The micropores and high crystallinity led to the highest adsorption surface area of [In(OH)bdc]n crystals synthesized at 80oC. The PL sensing characteristics were consistent between the three products synthesized at 60o, 80o and 100oC individually. The process-history independence of PL allowed [In(OH)bdc]n crystals to be synthesized in various conditions. The crystal growth curve can be served as a relationship between the synthetic parameters and the final product properties. Combined with the in situ monitoring instruments, we could control the conditions during synthesis and attained products with the desired properties.
On the other hand, the spherical agglomeration of [In(OH)bdc]n crystals was carried out in a n-heptane/ethanol/PEG system. Different amounts of MOF crystals (i.e. 1g and 5g) were used to compare the effect of sample loading. After the agglomeration process, the structure of MOF crystals remained integrity. But the lower desolvation temperature at 150oC could not eliminate the trapped n-heptane entirely, which led to the reduction in the amount of N2 adsorbed. The micropores were covered by PEG which worsened the situation and the adsorption volume decreased to 3.5 cm3/g. Although the spherical agglomerates lost the gas storage capability, the PL sensing characteristics were still remained. The improvement of flowability was indicated from the reduction in the Carr’s index which would benefit the powder handling for sensor fabrication.
Tarvainen, T.; Svarfvar, B.; Åkerman, S.; Savolainen, J.; Karhu, M.; Paronen, P.; Järvinen, K. Drug release from a porous ion-exchange membrane in vitro. Biomaterials 1999, 20 (22), 2177–2183.
Klaysom, C.; Marschall, R.; Moon, S. H.; Ladewig, B. P.; Lu, G. Q. M.; Wang, L. Preparation of porous composite ion-exchange membranes for desalination application. J. Mater. Chem. 2011, 21 (20), 7401-7409.
Figueiredo, J. L. Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A 2013, 1 (33), 9351-9364.
Ren, Y.; Ma, Z., Dai, S. Nanosize control on porous β-MnO2 and their catalytic
activity in CO oxidation and N2O decomposition. Materials 2014, 7 (5), 3547-3556
Giraldo, L. F.; López, B. L.; Pérez, L.; Urrego, S.; Sierra, L.; M. Mesa, M. Mesoporous silica applications. Macro. Symp. 2007, 258 (1), 129-141.
Kustandi, T. S.; Samper, V. D.; Ng, W. S.; Chong, A. S.; Han Gao, H. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J. Micromech. Microeng. 2007, 17 (10), N75-N81.
Lin, Z. J.; Han, L. W.; Wu, D. S.; Huang, Y. B.; Cao, R. Structure versatility of coordination polymers constructed from a semirigid tetracarboxylate ligand: syntheses, structures, and photoluminescent properties. Cryst. Growth Des. 2013, 13 (1), 255–263.
Zacher, D.; Shekhah, O.; Wöllb, C.; Fischer, R. A., Thin films of metal–organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1418-1429.
Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine. J. Am. Chem. Soc. 1994, 116 (3), 1151–1152.
Cho, W.; Lee, H. J.; Oh, M. Growth-controlled formation of porous coordination polymer particles. J. Am. Chem. Soc. 2008, 130 (50), 16943–16946.
Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Probing the lewis acidity and catalytic activity of the metal–organic framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chem. Eur. J. 2006, 12 (28), 7353–7363.
Gómez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; Snejko, N. Novel 2D and 3D indium metal-organic frameworks: topology and catalytic properties. Chem. Mater. 2005, 17 (10), 2568–2573.
Ouellette, W.; Darling, K.; Prosvirin, A.; Whitenack, K.; Dunbarb, K. R.; and Zubieta, J. Syntheses, structural characterization and properties of transition metal complexes of 5,5′-(1,4-phenylene)bis(1H-tetrazole) (H2bdt), 5′,5′′-(1,1′-biphenyl)-4,4′-diylbis(1H-tetrazole) (H2dbdt) and 5,5′,5′′-(1,3,5-phenylene)tris(1H-tetrazole) (H3btt). Dalton Trans., 2011, 40 (45), 12288-12300.
Hasegawa, S.; Horike, S.; Matsuda, R.; Furukawa, S.; Mochizuki, K.; Kinoshita Y.; Kitagawa, S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. J. Am. Chem. Soc. 2007, 129 (9), 2607–2614.
Tian, J.; V. Saraf, L. V.; Schwenzer, B.; Taylor, S. M.; Brechin, E. K.; Liu, J.; Dalgarno, S. J.; Thallapally, P. K. Selective metal cation capture by soft anionic metal–organic frameworks via drastic single-crystal-to-single-crystal transformations. J. Am. Chem. Soc. 2012, 134 (23), 9581–9584.
Wei, Q.; Yang, D.; Larson, T. E.; Kinnibrugh, T. L.; Zou, R.; Henson, N. J.; Timofeeva, T.; Xu, H.; Zhao, Y.; Mattes, B. R. Kinetic hysteresis in gas adsorption behavior for a rigid MOF arising from zig-zag channel structures. J. Mater. Chem. 2012, 22 (20), 10166-10171.
Hu, Y.; Xiang, S.; Zhang, W.; Zhang, Z.; Wang, L.; Bai, J.; Chen, B. A new MOF-505 analog exhibiting high acetylene storage. Chem. Commun. 2009, (48), 7551-7553
Xiao, B.; Wheatley, P. S.; Zhao, X.; Fletcher, A. J.; Fox, S.; Rossi, A. G.; Megson, I. L.; Bordiga, S.; Regli, L.; Thomas, K.M.; Morris, R. E. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J. Am. Chem. Soc. 2007, 129 (5), 1203-1209.
Lu, G.; Hupp, J. T. Metal−organic frameworks as sensors: a ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132 (23), 7832–7833.
Xie, Z.; Ma, L.; deKrafft, K. E.; Jin, A.; Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 2010, 132 (3), 922–923.
Zhen-Zhong Lu, Z. -Z.; Zhang, R.; Li, Y. -Z.; Guo, Z. -J.; Zheng, H. -G. Solvatochromic behavior of a nanotubular metal−organic framework for sensing small molecules. J. Am. Chem. Soc. 2011, 133 (12), 4172–4174.
Lu, G.; Farha, O. K.; Kreno, L. E.; Schoenecker, P. M.; Walton, K. S.; Van Duyne, R. P.; Hupp, J. T. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater. 2011, 23 (38), 4449–4452.
Lee, H.; Jung, S. H.; Han, W. S.; Moon, J. H.; Kang, S.; Lee, J. Y.; Jung, J. H.; Shinkai, S. A chromo-fluorogenic tetrazole-based CoBr2 coordination polymer gel as a highly sensitive and selective chemosensor for volatile gases containing chloride. Chem. Eur. J. 2011, 17 (10), 2823-2827.
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. –S.; Hwang, Y. K.; Marsaud, V.; Bories, P. -N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2011, 13 (20), 5983-5992.
Gomez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; N. Snejko, N. In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylate): an In(III) supramolecular 3D framework with catalytic activity. Inorg. Chem. 2002, 41 (9), 2429–2432.
Car, A.; Stropnik, C.; Klaus-Viktor Peinemann, K. V. Hybrid membrane materials with different metal–organic frameworks (MOFs) for gas separation. Desilation, 2006, 200 (1–3), 424–426.
Wang, Q. M.; Shen, D.; Bülow, M.; Lau, M. L.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.; Jessica, Semanscin. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 2002, 55 (2), 217–230.
Feng, P. L.; Perry IV, J. J.; Nikodemski, S.; Jacobs, B. W.; Meek, S. T.; Allendorf, M. D. Assessing the purity of metal−organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J. Am. Chem. Soc., 2010, 132 (44), 15487–15489.
Wen, L.; Wang, D.; Wang, C.; Wang, F.; Li, D.; Deng, K. A 3D porous zinc MOF constructed from a flexible tripodal ligand: Synthesis, structure, and photoluminescence property. J. Solid State Chem. 2009, 182 (3), 574–579.
Lee, T.; Liu, Z. X.; Hung Lin Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal–organic frameworks. Cryst. Growth Des. 2011, 11 (9), 4146–4154.
Lee, T.; Tsai, M. H.; Lee, H. L. Riboflavin chelated luminescent metal–organic framework: identified by liquid-assisted grinding for large-molecule sensing via chromaticity coordinates. Cryst. Growth Des. 2012, 12 (6), 3181–3190.
Farha, O. K.; Eryazici, I.; Jeong, N. C.; Hauser, B. G.; Wilmer, C. E.; Sarjeant, A. A.; Snurr, R. Q.; Nguyen, S. T.; Yazaydın, A. Ö.; Hupp, J. T. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 2012, 134 (36), 15016–15021.
McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. BioMOFs: metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. Engl. 2010, 49 (36), 6260-6266.
Huxford, R. C.; Rocca, J. D.; Lin, W. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14 (2), 262–268.
An, J.; Geib, S. G.; Rosi, N. L. Cation-triggered drug release from a porous zinc−adeninate metal−organic framework. J. Am. Chem. Soc. 2009, 131 (24), 8376–8377.
Mahanty, S.; Sruti, J.; Patra, C. N.; Rao, M. E. B. Particle design of drugs by spherical crystallization techniques. Int. J. Pharm. Sci. Nanotechnol. 2010, 3 (2), 912-918.
Kawashima, Y. Development of spherical crystallization technique and its application to pharmaceutical systems. Arch. Pharm. Res. 1984, 7 (2), 145-151.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22 (4), 357-371.
Pawar, A. P.; Paradkar, A. R.; Kadam, S. S.; Mahadik, K. R. Crystallo-co-agglomeration: a novel technique to obtain ibuprofen-paracetamol agglomerates. AAPS PharmSciTech 2004, 5 (3), 57-64.
Amaro-Gonzáleza, D.; Biscans, B. Spherical agglomeration during crystallization of an active pharmaceutical ingredient. Powder Technol. 2002, 128 (2-3), 188–194.
Kawashima, Y.; Lin, S. Y.; Ogawa, M.; Handa, T.; Takenaka, H. Preparations of agglomerated crystals of polymorphic mixtures and a new complex of indomethacin-epirizole by the spherical crystallization technique. J Pharm Sci. 1985, 74 (11)1152-1156.
Stock, N. High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater. 2010, 129 (3), 287-295.
Banerjee1, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319 (5865), 939-943.
Volkringer, C.; Loiseau, T.; Guillou, N.; Férey, G.; Haouas, M.; Taulelle, F.; Elkaim, E.; Stock, N. High-throughput aided synthesis of the porous metal−organic framework-type aluminum pyromellitate, MIL-121, with extra carboxylic acid functionalization. Inorg. Chem. 2010, 49 (21), 9852–9862.
Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous Mesoporous Mater. 2003, 58 (2), 105–114.
Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J. Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. Int. J. Hydrogen Energ. 2009, 34 (3), 1377–1382.
Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
Cho, W.; Lee, H. J.; Oh, M. Growth-controlled formation of porous coordination polymer particles. J. Am. Chem. Soc. 2008, 130 (50), 16943–16946.
Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M; Taulelle, F.; Audebrand, N.; Latroche, M. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg. Chem. 2008, 47 (24), 11892–11901.
Reinsch, H.; Stock, N. Formation and characterisation of Mn-MIL-100. CrystEngComm 2013, 15 (3), 544-550.
Biemmi, E.; Christian, S.; Stock, N.; Bein, T. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1. Microporous Mesoporous Mater. 2009, 117 (1–2), 111–117.
Go, Y. B.; Wang, X.; Anokhina, E. V.; Jacobson, A. J. Influence of the reaction temperature and pH on the coordination modes of the 1,4-benzenedicarboxylate (BDC) ligand: a case study of the NiII(BDC)/2,2’-bipyridine system. Inorg. Chem. 2005, 44 (23), 8265–8271.
McKinstry, C.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) crystals. Cryst. Growth Des. 2013, 13 (12), 5481–5486.
Millange, F.; El Osta, R.; Medina, M. E.; Walton, R. I. A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm 2011, 13 (1), 103-108.
Kerner, R.; Palchik, O.; Gedanken, A. Sonochemical and microwave-assisted preparations of PbTe and PbSe. A comparative study. Chem. Mater. 2001, 13 (4), 1413–1419.
Jhung, S. H.; Lee, J. H.; Chang, J. S. Microwave synthesis of a nanoporous hybrid material, chromium trimesate. Bull. Korean Chem. Soc. 2005, 26 (6), 880-881.
Chalati, T.; Horcajada, P.; Gref, R.; Couvreur, P.; Serre, C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. Mater. Chem. 2011,21 (7), 2220-2227.
Cho, H. Y.; Yang, D. A.; Kim, J.; Jeong, S. Y.; Ahn, W. S. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 2012, 185 (1), 35–40.
Lee, J. S.; Halligudi, S. B.; Jang, N. H.; Hwang, D. W.; Chang, J. S.; Hwang, Y. K. Microwave synthesis of a porous metal-organic framework, nickel(II) dihydroxyterephthalate and its catalytic properties in oxidation of cyclohexene. Bull. Korean Chem. Soc. 2010, 31 (6), 1489-1495.
Müller, U; Pütter, H.; Hesse, M.; Wessel, H.; Schubert, M.; Huff, J.; Guzmann, M. PCT Patent, WO/2005/049892.
Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater. 2010, 132 (1–2), 121–127.
Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007, 129 (17), 5324–5325.
Shoaee, M.; Anderson, M. W.; Attfield, M. P. Crystal growth of the nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew. Chem. Int. Ed. 2008, 47 (44), 8525-8528.
John, N. S.; Scherb, C. S.; Shöâeè, M. S.; Anderson, M. W.; Attfield, M. P.; Bein, T. Single layer growth of sub-micron metal–organic framework crystals observed by in situ atomic force microscopy. Chem. Commun. 2009, (41), 6294-6296.
Shekhah, O.; Wang, H.; Zacher, D.; Fischer, R. A.; Wöll, C. Growth mechanism of metal–organic frameworks: insights into the nucleation by employing a step-by-step route. Angew. Chem. Int. Ed. 2009, 48 (27), 5038–5041.
Millange, F.; Medina, M. I.; Guillou, N.; Férey, G.; Golden, K. M.; Walton, R. I. Time-resolved in situ diffraction study of the solvothermal crystallization of some prototypical metal–organic frameworks. Angew. Chem. Int. Ed. 2010, 49 (4), 763–766.
Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132 (51), 18030–18033.
Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Synthesis of a metal–organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem. Eur. J. 2010, 16 (3), 1046–1052.
Centrone, A.; Yang, Y.; Speakman, S.; Bromberg, L.; Rutledge, G. C.; Hatton, T. A. Growth of metal−organic frameworks on polymer surfaces. J. Am. Chem. Soc. 2010, 132 (44), 15687–15691.
Ahnfeldt, T.; Moellmer, J.; Guillerm, V.; Staudt, R.; Serre, C.; Stock, N. High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating. Chem. Eur. J. 2011, 17 (23), 6462–6468.
Millange, F.; El Osta, R.; Medina, M. E.; Walton, R. I. A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm 2011, 13 (1), 103-108.
Stavitski, E.; Goesten, M.; Juan-Alcañiz, J.; Martinez-Joaristi, A.; Serra-Crespo, P.; Petukhov, A. V.; Gascon, J.; Kapteijn, F. Kinetic control of metal–organic framework crystallization investigated by time-resolved in situ X-ray scattering. Angew. Chem. Int. Ed. 2011, 50 (41), 9624–9628.
Goesten, M. G.; Stavitski, E.; Juan-Alcañiza, J.; Martiñez-Joaristia, A.; Petukhov, A. V.; Kapteijn, F.; Gascon, J. Small-angle X-ray scattering documents the growth of metal-organic frameworks. Catal. Today 2013, 205 (30), 120–127
Juan-Alcañiz, J.; Goesten, M.; Martinez-Joaristi, A.; Stavitski, E.; Petukhov, A. V.; Gascon, J.; Kapteijn, F. Live encapsulation of a Keggin polyanion in NH2-MIL-101(Al) observed by in situ time resolved X-ray scattering. Chem. Commun. 2011, 47 (30), 8578-8580.
Schoenecker, P. M.; Belancik, G. A.; Grabicka, B. E.; Walton, K. S. Kinetics study and crystallization process design for scale-up of UiO-66-NH2 synthesis. AIChE J. 2013, 59 (4), 1255–1262.
Surblé, S.; Millange, F.; Serre, C.; Férey, G.; Walton, R. I. An EXAFS study of the formation of a nanoporous metal–organic framework: evidence for the retention of secondary building units during synthesis. Chem. Commun. 2006, (14), 1518-1520.
Mahanty, S.; Struti, J.; Patra, C. N.; Rao, M. E. B. Particle design of drugs by spherical crystallization techniques. Int. J. Pharm. Sci. Nanotechnol. 2010, 3 (2), 912-918.
Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62 (1), 1-14.
Yadav, V. B.; Yadav, A. V. Effect of different stabilizers and polymers on spherical agglomerates of gresiofulvine by emulsion solvent diffusion (ESD) system. Int. J. Pharm. Tech. Res. 2009, 1 (2), 149-150.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22 (4), 357-371.
Bhadra, S.; Kumar, M.; Jain, S.; Agrawal, S.; Agrawal, G. P. Spherical crystallization of mefenamic acid. Pharm. Technol. 2004, 28 (2), 66-76.
Puechagut, H. G.; Bianchotti, J.; Chiale, C. A. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system. J. Pharm. Sci. 1998, 87 (4), 519–523.
Sano, A.; Kuriki, T.; Kawashima, Y.; Takeuchi, H.; Hino, T.; Niwa, T. Particle design of tolbutamide by the spherical crystallization technique. V. Improvement of dissolution and bioavailability of direct compressed tablets prepared using tolbutamide agglomerated crystals Chem. Pharm. Bull. 1992, 40 (11), 3030-3035.
Kawashima, Y.; Handa, T.; Takeuchi, H.; Okumura, M.; Katou, H.; Nagata, O. Crystal modification of phenytoin with polyethylene glycol for improving mechanical strength, dissolution rate and bioavailability by a spherical crystallization technique. Chem. Pharm. Bull.1986, 34 (8), 3376-3383.
Pawar, A. P.; Paradkar,A. R.; Kadam, S. S.; Mahadik, K. R. Crystallo-co-agglomeration: a novel technique to obtain ibuprofen-paracetamol agglomerates. AAPS PharmSciTech 2004, 5 (3), 57-64.
Chen, B.; Eddaoudi, M.; Reineke, T. M.; Kampf, J. M.; O’ Keefee, M.; Yaghi, O. M. Cu2(ATC)⋅ 6H2O: design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-adamantane tetracarboxylate). J. Am. Chem. Soc. 2000, 122 (46), 11559-11560.
Tao, J.; Tong, M. L.; Chen, X. M. Hydrothermal synthesis and crystal structure of three-dimensional co-ordination frameworks constructed with mixed terephthalate (tp) and 4,4’-bipyridine (4,4’ –bipy) ligands: [M(tp)(4,4’-bipy)] (M = CoII, CdII, ZnII). J. Chem. Soc., Dalton Trans. 2000, (20), 3669-3674.
Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. Microporous manganese formate: a simple metal−organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 2004, 126 (1), 32–33.
Dincǎ, M.; Long, J. R. Strong H2 binding and selective gas adsorption within the microporous coordination solid Mg3(O2C-C10H6-CO2)3. J. Am. Chem. Soc., 2005 127 (26), 9376–9377.
An, J.; Geib, S. J.; Rosi, N. L. Cation-triggered drug release from a porous zinc−adeninate metal−organic framework. J. Am. Chem. Soc., 2009 131 (24), 8376–8377
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9 (2), 172–178.
Zhang, Z.; Xiang, S.; Chen, B. Microporous metal–organic frameworks for
acetylene storage and separation. CrystEngComm 2011, 13 (20), 5983-5992.
Lu, G.; Hupp, J. T. Metal−organic frameworks as sensors: a ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132 (23), 7832–7833.
Gomez-Lor, B.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; N. Snejko, N. In2(OH)3(BDC)1.5 (BDC = 1,4-Benzendicarboxylate): an In(III) supramolecular 3D framework with catalytic activity. Inorg. Chem. 2002, 41 (9), 2429–2432.
Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg. Chem. 2008, 47 (24), 11892–11901.
Wanga, L.; Songa, T.; Lia, C.; Xiaa, J.; Wanga, S.; Wanga, L.; Xub, J. Three novel indium MOFs derived from dicarboxylate ligands: syntheses, structures and photoluminescent properties. J. Solid State Chem. 2012, 190, 208–215.
Blanita, G.; Ardelean, O.; Lupu, D.; Borodi, G.; Mihet, M.; Coros, M.; Vlassa, M.; Misan, I.; Coldea, I.; Popeneciu, G. Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 2011, 56 (6), 583-588.
Klinowski, J.; Almeida Paz, F. A. A.; Silvab, P.; Rocha, J. Microwave-assisted synthesis of metal–organic frameworks. Dalton Trans. 2011, 40 (2), 321-330.
Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; Vos, D. E. D. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chem. Mater. 2009, 21 (13), 2580–2582.
Joaristi, A. M.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 2012, 12 (7), 3489–3498.
Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008, (31), 3642–3644.
Chowdhury, P.; Bikkina, C.; Meister, D.; Dreisbach, F.; Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 2009, 117 (1–2), 406–413.
Pastoriza-Santos, I.; Liz-Marzán, L. M. N,N-Dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv. Funct. Mater. 2009, 19 (5), 679-688.
Hugar, G. H.; Nandibewoor, S. T. Kinetics of osmium(VIII) catalysis of periodate oxidation of DMF in aqueous alkaline medium. Transition Met. Chem. 1994, 19 (2), 215-217.
Khan, Z.; Din, K. U. Kinetics and mechanism of the reaction between dimethylformamide and chromium(VI). Int. J. Chem. Kinet. 1999, 31 (6), 409–415.
Reinsch, H.; Norbert Stock, N. Formation and characterisation of Mn-MIL-100. CrystEngComm 2013,15 (3), 544-550.
Venna, S. R.; Jasinski, J. B.; Carreon, M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132 (51), 18030–18033.
Millange, F.; Osta, R. E.; Medina, M. E.; Walton, R. I. A time-resolved diffraction study of a window of stability in the synthesis of a copper carboxylate metal–organic framework. CrystEngComm 2011, 13 (1), 103-108.
Goesten, M. G.; Stavitski, E.; Juan-Alcañiz, J.; Martiñez-Joaristi, A.; Petukhov, A. V.; Kapteijn, F.; Gascon, J. Small-angle X-ray scattering documents the growth of metal-organic frameworks. Catal. Today 2013, 205 (30), 120–127.
Reinsch, H.; Stock, N. Formation and characterisation of Mn-MIL-100. CrystEngComm 2013, 15 (3), 544-550.
Marangoni, A. G. On the use and misuse of the avrami equation in characterization of the kinetics of fat crystallization. J. Am. Oil Chem. Soc. 1998, 75 (10), 1465-1467.
Hiemenz, P. C. Polymer chemistry: the basic concepts, Dekker, M., New York, 1984.
Amaro-González, D.; Biscans, B. Spherical agglomeration during crystallization of an active pharmaceutical ingredient. Powder Technol. 2002, 128 (2–3), 188–194.
Kovačič, B.; Vrečer, F.; Planinšek, O. Spherical crystallization of drugs. Acta Pharm. 2012, 62 (1), 1-14.
Thatia, J.; Rasmuson, Å, C. Particle engineering of benzoic acid by spherical agglomeration. Eur. J. Pharm. Sci. 2012, 45 (5), 657–667.
Kawashima Y.; Okumura M.; Takenaka H. Spherical crystallization: direct spherical agglomeration of salicylic Acid crystals during crystallization. Science 1982, 216 (4550), 1127-1128.
Kawashima, Y. Development of spherical crystallization technique and its application to pharmaceutical systems. Arch. Pharm. Res. 1984, 7 (2), 145-151.
Chow, A. H. L.; Leung, M. W. M. A study of the mechanisms of wet spherical agglomeration of pharmaceutical powders. Drug Dev. Ind. Pharm. 1996, 22 (4), 357-371.
Nichol, G. S.; Clegg, W. Classical hydrogen bonding and weaker C–H⋯O interactions in complexes of uracil-5-carboxylic acid with the alkali metals Na–Cs. Polyhedron 2006, 25 (4), 1043–1056.
Hajjar, R.; Volkringer, C.; Loiseau, T.; Guillou, N.; Marrot, J.; Férey, G.; Margiolaki, I.; Fink, G.; Morais, C.; Taulelle, F. 71Ga slow-CTMAS NMR and crystal structures of MOF-type gallium carboxylates with infinite edge-sharing octahedra chains (MIL-120 and MIL-124). Chem. Mater. 2011, 23 (1), 39–47.
Li, Z.; Li, M.; Zhou, X. P.; Wu, T.; Li, D.; Ng, S. W. Metal-directed supramolecular architectures: from mononuclear to 3D frameworks based on in situ tetrazole ligand synthesis. Crystal Growth & Design 2007, 7 (10), 1992–1998.
Lu, Z. Z.; Zhang, R.; Li, Y. Z.; Guo, Z. J.; Zheng, H. G. Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. J. Am. Chem. Soc. 2011, 133(12), 4172-4174.
Xie, Z.; Ma, L.; deKrafft, K. E.; Jin, A.; Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc., 2010, 132 (3), 922–923.
Lu, G.; Hupp, J. T. Metal−organic frameworks as sensors: a ZIF-8 based Fabry−Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132 (23), 7832–7833.
Lu, G.; Farha, O. K.; Kreno, L. E.; Schoenecker, P. M.; Walton, K. S.; Van Duyne, R. P.; Hupp, J. T. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater. 2011, 23 (38), 4449–4452.
Lee, T.; Liu, Z. X.; Lee, H. L. A biomimetic nose by microcrystals and oriented films of luminescent porous metal–organic frameworks. Cryst. Growth Des. 2011, 11 (9), 4146–4154.
Webb, P. A.; Orr, C. Analytical methods in fine particle technology. Micromeritics instrument corporation, USA, 1997.
Wenig, W. Ageing effects during isothermal crystallization of polypropylene blended with elastomers. J. Mater. Sci. 1994, 29 (18), 4708-4712.
Remaly, L. S.; Schultz, J. M. Time-dependent effect of spherulite size on the tensile behavior of polypropylene. J. Appl. Polym. Sci. 1970, 14 (7), 1871–1877.
Gordona, M.; Hilliera, I. H. Mechanism of secondary crystallization of polymethylene. Philos. Mag. 1965, 11 (109), 31-41.
Vinogradskaya, T. L.; Molchanova, G. A.; Tarasov, B. Y. Effect of production technology upon the supramolecular structure of crystalline polymers. Polym. Mech., 1965 1 (2), 5-14.
Sperling, L. H. Introduction to physical polymer science. John Wiley & Sons, Inc., Hoboken, New Jersey. 2006.
Ahnfeldt, T.; Moellmer, J.; Guillerm, V.; Staudt, R.; Serre, C.; Stock, N. High-throughput and time-resolved energy-dispersive X-ray diffraction (EDXRD) study of the formation of CAU-1-(OH)2: microwave and conventional heating. Chem. -Eur. J. 17 (23), 6462–6468.
Lin, Z.; Jiang, F.; Chen, L.; Yuan, D.; Hong, M. New 3-D chiral framework of indium with 1,3,5-benzenetricarboxylate. Inorg. Chem. 2005, 44 (1), 73–76.
Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems - with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57 (4), 603-619.
Thommes, M. Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 2010, 82 (7), 1059-1073.
Monson, P. A. Contact angles, pore condensation, and hysteresis: insights from a simple molecular model. Langmuir 2008, 24 (21), 12295–12302.
Fletcher, A. J.; Thomas, K. M.; Rosseinsky, M. J. Flexibility in metal-organic framework materials: Impact on sorption properties. J. Solid State Chem. 2005, 178 (8), 2491–2510.
Zhao, X.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 2004, 306 (5698), 1012-1015.
Jung, S.; Oh, M. Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles. Angew. Chem., Int. Ed. 2008, 47 (11), 2049-2051.
Kawashima, Y.; Capes, C. E. An experimental study of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol. 1974, 10 (1-2), 85–92.
Kawashima, Y.; Capes, C. E. Further studies of the kinetics of spherical agglomeration in a stirred vessel. Powder Technol. 1976, 13 (2), 279–288.
Bos, A. S.; Zuiderweg, F. J. Size of agglomerates in batchwise suspension agglomeration. Chem. Eng. Res. Des. 1987, 65 (2), 187-194.
Garcia-Ochoa, F., Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 2009, 27 (2), 153-176.
Faure, A.; York, P.; Rowe, R. C. Process control and scale-up of pharmaceutical wet granulation processes: a review. Eur. J. Pharm. Biopharm. 2001, 52 (3), 269–277.
Bell, T. A. Challenges in the scale-up of particulate processes—an industrial perspective. Powder Technol. 2005, 150 (2), 60–71.