| 研究生: |
李宜勳 Yi-hsun Lee |
|---|---|
| 論文名稱: |
行星式運動結合二維振動輔助磁力研磨設備開發與應用 Development and Implementation of Equipment on Planetary Motion Combined with Two-Dimensional Vibration-Assisted Magnetic Abrasive Finishing |
| 指導教授: |
顏炳華
Biing-hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 磁力研磨 |
| 外文關鍵詞: | MAF |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以自行開發的新型磁力研磨法為研究主軸,應用行星式運動結合二維振動輔助磁力研磨(PM-2DVAMAF)的機制於不鏽鋼材料上進行拋光。
首先探討二維振動輔助對於MAF的影響,以及針對各加工參數的特性進行研究。結果顯示,二維振動輔助磁力研磨(2D VAMAF)的機制可以使工件的表面與磁極的旋轉加工方向形成緻密的交叉加工痕跡,因此可以提高研磨效率與精度。實驗證明,振動輔助磁力研磨加工在最適參數組合下,能於5分鐘內有效改善不鏽鋼表面粗糙度由Ra 0.13μm改善至0.03μm,改善率達77%。
進一步利用行星式運動結合二維振動輔助磁力研磨,其主要目的是利用行星齒輪機構自轉與公轉的特點,結合二維振動輔助,使工件表面形成高密度的交叉紋路。結果顯示,在最適當的參數組合下,能於12.5分鐘內有效改善不銹鋼表面粗糙度由Ra0.16μm降低至0.032μm,改善率為80%。
最後探討二維振動輔助磁力研磨配合羊毛氈拋光墊,對於不鏽鋼表面粗糙度改善之情況。結果顯示,在最適當的參數組合下能在5分鐘內有效改善不銹鋼表面粗糙度由Ra0.14μm降低至0.03μm,改善率為78.57%。
This study develops a new surface polishing approach by combining planetary motion (PM) with two-dimensional vibration-assisted magnetic abrasive finishing (PM-2DVAMAF). Planetary motion involves both rotation and revolution, thus generating radial acceleration, which strengthens the normal force exerted on the workpiece surface, and in turn enhances the cutting power of the abrasives and their polishing performance.
First, investigate adding the two-dimensional vibration-assisted influence on the processing of MAF. From experimental results, 2D VAMAF can effectively increase the polishing efficiency of MAF and improve surface quality. In addition to MAF by steel particles and SiC abrasives, dense intersecting machining paths on the workpiece are also formed under vibration assistance, thus contributing to better polishing efficiency and precision. With 5-min 2D VAMAF under optimal parameter combination, the surface roughness of a stainless steel SUS304 workpiece can be reduced from 0.13 μm to 0.03 μm, an improvement of 77%.
Further discussion PM-2DVAMAF, PM results in uniform, intersecting and closely packed polishing paths, which contribute to better surface quality within a shorter processing time. Experimental results reveal that 12.5-min PM-2DVAMAF under optimal parameter combination can reduce surface roughness of a stainless steel SUS304 workpiece from 0.16 μm to 0.032 μm, an improvement of 80%.
1. S. Yin and T. Shinmura, “Vertical vibration-assisted magnetic abrasive finishing and deburring for magnesium alloy”, International Journal of Machine Tools & Manufacture, Vol. 44, NO.12-13, pp.1297-1303, 2004.
2. 鄒艷華,進村武男,“永久磁石と磁性粒子を利用した内面の磁気バリ取り技術の研究開発”,砥粒加工学会会誌, Vol. 51, No. 2, pp. 94-99, 2007。
3. 夏目勝之,進村武男,“振動方式磁気研磨加工における研磨速度の研磨特性に及ぼす効果”,砥粒加工学会会誌, Vol. 52, No. 9, pp. 531-536, 2008。
4. 藤田秀樹,進村武男,“軸方向振動方式による異形管内面の磁気援用加工法に関する研究-異なる磁性粒子の利用による角管内面および隅(コーナ)部の平滑化促進効果”,砥粒加工学会会誌, Vol. 52, No. 4, pp. 214-218, 2008。
5. I.T. Im, S.D. Mun and S.M. Oh, “Micro machining of an STS 304 bar by magnetic abrasive finishing”, Journal of Mechanical Science and Technology, Vol.23, pp.1982-1988, 2009.
6. V.K. Jain, P. Kumar, P.K. Behera and S.C. Jayswal, “Effect of working gap and circumferential speed on the performance of magnetic abrasive finishing process”, WEAR, Vol.250, NO.1-12, pp.384-390, 2001.
7. D. Wang, T. Shinmura, H. Yamaguchi, “Study of magnetic field assisted mechanochemical polishing process for inner surface of si3n4 ceramic components finishing characteristics under wet finishing using distilled water”, International Journal of Machine Tools & Manufacture, Vol.44, NO.14, pp.1547-1553, 2004.
8. Y. Wang and D.J. Hu, “Study on the inner surface finishing of tubing by magnetic abrasive finishing”, International Journal of Machine Tools & Manufacture, Vol.45, NO.1, pp.43-49, 2005.
9. J.D. Kim, I.H. Noh, “Magnetic polishing of three dimensional die and mold surfaces”, The International Journal of Advanced Manufacturing Technology, Vol.33, pp.18-23, 2007.
10. J.S. Kwak, “Enhanced magnetic abrasive polishing of non-ferrous metals utilizing a permanent magnet”, Journal of Machine Tools & Manufacture, Vol.49, pp.613-618, 2009.
11. D.K. Singh, V.K. Jain, V. Raghuram and R. Komanduri, “Analysis of surfacetexture generated by a flexible magnetic abrasive brush”, WEAR, Vol.259, pp.1254-1261, 2005.
12. B. Karpuschewski, O. Byelyayev, V.S. Maiboroda, “Magneto-abrasive machining for the mechanical preparation of high-speed steel twist drills”, CIRP Annals - Manufacturing Technology, 58, pp.295-298, 2009.
13. K. Shimada, Y. Wu and YC. Wong, “Effect of magnetic cluster and magnetic field on polishing using magnetic compound fluid”, Journal of Magnetism and Magnetic Materials, Vo.262, pp. 242-247, 2003.
14. K. Hanada, H. Yamaguchi and H. Zhou, “New spherical magnetic abrasives with carried diamond particles for internal finishing of capillary tubes”, Diamond and Related Materials, Vol.17, pp. 1434-1437, 2008.
15. T. Furuya, Y. Wu, M. Nomura, K. Shimada, K. Yamamoto, “Fundamental performance of magnetic compound fluid polishing liquid in contact-free polishing of metal surface” ,Journal of Materials Processing, Vol.201, pp. 536-541, 2008.
16. S. Singh, HS. Shan and P. Kumar, “Wear behavior of materials in magnetically assisted abrasive flow machining”, Journal of Materials Processing, Vol.128, pp. 155-161, 2002.
17. T. Shinmura, E. Hatano and K. Takazawa, “Development of Plane Magnetic Abrasive Finishing Apparatus and its Finishing Performance”, J. of JSPE(in Japanese), Vo1.52, pp.1080-1086, 1986.
18. 莊政儒,「磁力研磨法應用於方管內表面精磨之研究」,私立華梵大學,碩士論文,2002。
19. 林江龍,「放電加工電極消耗可靠度與製程參數最佳化研究」,國立中央大學機械工程學系博士論文,1999。
20. M.S. Phadke, “Quality engineering using robust design”, AT& T Laboratories 1989.
21. F.C. Khaw, B.S. Lim and L.E.N. Lim, “Optimal Design of Neural Networks Using the Taguchi Method”, Neurocomputing, Vol.7, pp.225-245, 1995.
22. W.H. Yang, Y.S. Tarng, “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology Vol.84, pp.122-129, 1998.
23. J.H. Lau, C. Chang, “Taguchi Design of Experiment for Wafer Bumping by Stencil Printing”, IEEE Transactions on Electronics Packaging Manufacturing, Vol.233, pp.219-225,2000.
24. A. Mertol, “Application of the Taguchi Method to Chip Scale Package (CSP) Design”, IEEE Transactions on Advanced Packaging, Vol.23, pp. 266–276, 2000.
25. G. Taguchi, “Taguchi Methods in LSI Fabrication Process”, IEEE International Workshop on 2001 6th, pp.1-6, 2001.
26. Y.S. Tarng, S.C. Juang and C.H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hard facing”, Journal of Materials Processing Technology, Vol.128, pp.1-6, 2002.
27. J.M. Liang, P.J. Wang,” Self-learning control for injection molding based on neural networks optimization”, Journal of Injection Molding Technology, Vol.6, pp.58-72, 2002.
28. J.A. Ghani, I.A. Choudhury and H.H. Hassan, “Application of Taguchi method in the optimization of end milling parameters”, Journal of Materials Processing Technology, Vol.145, pp. 84-92, 2004.
29. T. Shinmura, T. Aizawa, “Study on Internal Finishing of a Nonferromagnetic Tubing by Magnetic Abrasive Machining Process”, Bulletin of The Japan Society of Precision Engineering, Vol.23, pp.37-41, 1989.
30. 張榮顯,「磁力研磨加工應用於放電加工表面改善之研究」,國立中央大學,碩士論文,2001。
31. 黃孟祥,「磁氣研磨法於微細電極表面拋光技術之研究」,國立雲林科技大學,碩士論文,2000。
32. 李輝煌,田口方法-品質設計的原理與實務,三版,高立圖書有限公司,台北,2010。
33. J.Wu, Y.Zou and H,Sugiyama, “Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic alternating magnetic field”, Journal of Magnetism and Magnetic Materials, Vol.386, pp.50-59, 2015.
34. G.X. Zhang, Y.G. Zhao, D.B. Zhao, F.S. Yin and Z.D. Zhao, “Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification”, Scripta Materialia, Vol.65, pp.416-419,2011.
35. K.B. Judal, V. Yadava, “Modeling and simulation of cylindrical electro-chemical magnetic abrasive machining of AISI-420 magnetic steel”, Journal of Materials Processing Technology, Vol.213, pp.2089-2100, 2013.
36. H. Yamaguchi, J. Kang and F. Hashimoto, “Metastable austenitic stainless steel tool for magnetic abrasive finishing”, CIRP Annals-Manufacturing Technology, Vol.60, pp.339-342, 2011.
37. J.S. KWAK, “Mathematical model determination for improvement of surface roughness in magnetic-assisted abrasive polishing of nonferrous AISI316 material”, Trans. Nonferrous Met. Soc. China, Vol.22, pp.s845-s850, 2012.
38. H. Yamaguchi, A.K. Srivastava, M. Tan and F. Hashimoto, ” Magnetic Abrasive Finishing of cutting tools for high-speed machining of titanium alloys”, CIRP Journal of Manufacturing Science and Technology, Vol.7, pp.299-304, 2014.
39. J. Kang and H. Yamaguchi, “Internal finishing of capillary tubes by magnetic abrasive finishing using a multiple pole-tip system”, Precision Engineering, Vol.36, pp.510-516, 2012.
40. P. Kala and P.M. Pandey, “Experimental Study on Finishing Forces in Double Disk Magnetic Abrasive Finishing Process While Finishing Paramagnetic Workpiece”, Procedia Materials Science, Vol.5, pp.1677-1684, 2014.
41. P. Kala and P.M. Pandey, “Comparison of finishing characteristics of two paramagnetic materials using double disc magnetic abrasive finishing”, Journal of Manufacturing Processes, Vol.17, pp.63-77, 2015.
42. N. Sihag, P. Kala and P.M. Pandey, “Chemo Assisted Magnetic Abrasive Finishing-Experimental Investigations”, 12th Global Conference of Sustainable Manufacturing, Vol.26, pp.539-543, 2015.
43. J. Kang, A. George and H. Yamaguchi, “High-speed Internal Finishing of Capillary Tubes by Magnetic Abrasive Finishing”, 5th CIRP Conference on High Performance Cutting, Vol.1, pp.414-418, 2012.
44. G.Y. Liu, Z.N. Guo, S.Z. Jiang, N.S. Qu and Y.B. Li, “A Study of Processing Al 6061 with Electrochemical Magnetic Abrasive Finishing” 6th CIRP International Conference on High Performance Cutting, Vol.14, pp.234-238, 2014.