| 研究生: |
張毅輝 Yi-hui Zhang |
|---|---|
| 論文名稱: |
高分子接枝層調控對稱型雙嵌段共聚物層狀奈米微相結構之排向 A Study on surface morphologies of grafted or anchored layers and effects of tunable surface fields on orientations of lamellae within P(S-b-MMA) thin films |
| 指導教授: |
孫亞賢
Ya-Sen Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 排向性質 、表面形貌 、高分子接枝層 |
| 外文關鍵詞: | orientation, surface morphology, grafted layer of polymer |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分別探討接枝在矽基材表面之高分子接枝層之微結構以及利用此高分子接枝層進一步調控對稱型雙嵌段共聚物薄膜之層狀微相奈米結構之排向探討。
第一部份,探討接枝在矽基材表面之高分子接枝層之微結構相形態。此研究利用尾端接有氫氧基之聚苯乙烯均聚物(polystyrene, PS)、聚甲基丙烯酸甲酯均聚物(poly(methyl methacrylate), PMMA))及其兩成份混摻體(binary blends:PS/PMMA),進行化學接枝(grafting)方法改質矽基材表面。或是利用(加入)低分子量對稱型聚苯乙烯聚甲基丙烯酸甲酯雙嵌段共聚物塗佈於矽基材上,進行物理錨定(anchoring)方法,錨定於矽晶基材上。並藉由三成份混摻體進行矽基材表面改質。進一步利用光學顯微鏡,觀察高分子接枝層薄膜之表面除潤形貌。並利用X光反射量測高分子之接枝層薄膜厚度並定量分析高分子之接枝密度。並利用原子力顯微鏡觀察表面高分子接枝層之表面形貌,建立高分子混摻體(兩成份PS/PMMA或是三成份PS/PMMA/P(S-b-MMA)混摻)接枝層之組成與形態之關係。其實驗結果顯示高分子接枝層之表面形貌,受到混摻組成不同,而呈現不同的表面形貌。分別有波浪狀形貌(ripple)結構及類似顆粒狀(dimple)形貌之結構。進而加入低分子量之雙嵌段共聚物,亦可使表面呈波浪狀表面形貌。
第二部份利用分子接枝層進一步調控高分子量對稱型雙嵌段共聚物之層狀微相奈米結構之排向。由於對稱型雙嵌段共聚物層狀奈米結構受高分子接枝層與薄膜厚度的影響,分別會呈現水平排向、垂直排向以及混合排向。分別由原子力顯微鏡觀察以及低掠角X光散射實驗量測,可清楚觀察雙嵌段共聚物薄膜的表面與內部之層狀奈米結構之排向。
In this thesis, I explored the surface morphologies of grafted layers of low-molecular-weight homopolymers (PS and PMMA) or anchored ones of low-molecular-weight diblock copolymer (P(S-b-MMA)) on top of SiOx/Si. The grafted layers of mixed binary homopolymers (PS/PMMA) of various compositions or those of ternary blends (PS/PMMA/P(S-b-MMA) of various fractions were also investigated for comparisons. The surface morphologies and height profiles were characterized by using atomic force microscopy (AFM), X-ray reflectivity (XRR), and optical microscopy (OM). Grafted PS with a high grafting density on SiOx/Si was found to have a homogenously smooth surface, indicative of a brush conformation. The AFM image of grafted PMMA with a relative density on SiOx/Si displayed the formation of uniform PMMA clusters. The clustering of grafted PMMA chains was ascribed to an inter-chain affinity among the polar carboxyl groups of PMMA chains. By contrast, anchored P(S-b-MMA) revealed a ripple-like morphology. For grafted layers of binary PS/PMMA and ternary PS/PMMA/P(S-b-MMA), their surface morphologies varied with the mixed compositions. The surface morphology was dominantly governed by the major component in binary or ternary mixtures.
Next, by using grazing-incident small-angle scattering (GISAXS) I further investigated the orientation of lamellar nanodomains within thin films of symmetric P(S-b-MMA) of high molecular weight on silicon substrates with tunable polymer-substrate interfacial fields. The varied surface fields of silicon substrates were prepared by grafting a layer of short PS or PMMA chains, or by anchoring a layer of short P(S-b-MMA) chains. It was demonstrated that in most cases, mixed orientations of vertical and parallel lamellae were present in P(S-b-MMA) thin films. Only substrates coated with end-anchoring P(S-b-MMA) chains led to a vertical orientation of lamellae existing through the whole film thickness.
[1] Tsujii Y., Ohno K., Yamamoto S., Goto A., Fukuda T. “Structure and Properties of High-Density Polymer Brushes Prepared by Surface- Initiated Living Radical Polymerization”, Adv. Polym. Sci., 197, 1-45 (2006)
[2] Poetes R. M. H.“Dynamic and static conformations at the water-solid interface”, Dissertation (2009)
[3] Stamm M., Minko S., Arndt K. F. “Switching of Surface Composition and Morphology of Binary Polymer Brushes”, Dissertation (2004)
[4] Minko S., Müller M., Usov D., Scholl A., Froeck C., and Stamm1 M. “Lateral versus Perpendicular Segregation in Mixed Polymer Brushes”, Phys. Rev. Lett., 88, 035502-1-035502-4 (2002)
[5] Müller M. “Phase diagram of a mixed polymer brush”, Phys. Rev. E, 65, 030802-1-030802-4 (2002)
[6] Usov D., Gruzdev V., Nitschke M., Stamm M., Hoy O., Luzinov I., Tokarev I., Minko S. “Three-Dimensional Analysis of Switching Mechanism of Mixed Polymer Brushes”, Macromolecules, 40, 8774-8783 (2007)
[7] Gersappe G., Fasolka M., Israels R., Balazs A. C. “Modeling the Behavior of Random Copolymer Brushes,” Macromolecules, 28, 4753-4755 (1995)
[8] Zhulina E. B., Singh C., Balazs A. C.,“Forming Patterned Films with Tethered Diblock Copolymers”, Macromolecules, 29, 6338-6348 (1996)
[9] Zhulina E. B., Singh C., Balazs A. C. “Self-Assembly of Tethered Diblocks in Selective Solvents”, Macromolecules, 29, 8254-8259 (1996)
[10] Tomlinson M. R. Genzer J. “Evolution of Surface Morphologies in Multivariant Assemblies of Surface-Tethered Diblock Copolymers after Selective Solvent Treatment”, Langmuir, 21, 11552-11555 (2005)
[11] Guskova O. A., Seidel C. “Mesoscopic Simulations of Morphological Transitions of stimuli-Responsive Diblock Copolymer Brushes”, Macromolecules, 44, 671-682 (2011)
[12] Wang J., Mu¨ ller M. “Microphase Separation of Diblock Copolymer Brushes in Selective olvents: Single-Chain-in-Mean-Field Simulations and Integral eometry Analysis”, Macromolecules, 42, 2251-2264 (2009)
[13] Zhao B., Brittain W. J., Zhou W., Cheng S. Z. D. “Nanopattern Formation from Tethered PS-b-PMMA Brushes upon Treatment with Selective Solvents”, J. Am. Chem. Soc., 122, 2407-2408 (2000)
[14] Yin Y., Sun P., Li B., Chen T., Jin Q., Ding D., Shi A. C. “A Simulated Annealing Study of Diblock Copolymer Brushes in Selective Solvents”, Macromolecules, 40, 5161-5170 (2007)
[15] Singh C., Balazs A. C. “Interactions between Polymer-Coated Surfaces in Poor Solvents. 2. Surfaces Coated with AB Diblock Copolymers”, Macromolecules, 29, 8904-8911 (1996)
[16] Zhao B., Brittain W. J., Zhou W., Cheng S. Z. D. “AFM Study of Tethered Polystyrene-b-poly(methyl methacrylate) and Polystyrene -b-poly(methyl acrylate) Brushes on Flat Silicate Substrates”, Macromolecules, 33, 8821-8827 (2000)
[17] Julthongpiput D., Lin Y. H., Teng J., Zubarev E. R., Tsukruk V. V., “Y-Shaped Polymer Brushes: Nanoscale Switchable Surfaces”, Langmuir, 19, 7832-7836 (2003)
[18] Zhulina E., Balazs A. C.,“Designing Patterned Surfaces by Grafting Y-Shaped Copolymers”, Macromolecules, 29, 2667-2673 (1996)
[19] Julthongpiput D., Lin Y. H., Teng J., Zubarev E. R., Tsukruk V. V. “Y-Shaped Amphiphilic Brushes with Switchable Micellar Surface Structures”, J. Am. Chem. Soc., 125, 15912-15921 (2003)
[20] Lin Y.H., Teng J., Zubarev E. R., Shulha H., Tsukruk V. V.“In-situ Observation of Switchable Nanoscale Topography for Y-Shaped Binary Brushes in Fluids”, Nano Lett., 5, 491-495 (2005)
[21] Zhao B., Brittain W. J. “Polymer brushes: surface-immobilized macromolecules”, Polym. Sci., 25, 677-710 (2000)
[22] Wilshaw C. “Directed Phase Separation of Polymer Blends on Binary-Patterned Polymer Brushes”, Dissertation (2010)
[23] Zhao B., Haasch R. T., MacLaren S. “Self-reorganization of mixed poly(methyl methacrylate)/polystyrene brushes on planar silica substrates in response to combined selective solvent treatments and thermal annealing”, Polymer, 45, 7979-7988 (2004)
[24] Zhao B. “A Combinatorial Approach to Study Solvent-Induced Self-Assembly of Mixed Poly(methyl methacrylate)/Polystyrene Brushes on Planar Silica Substrates: Effect of Relative Grafting Density”, Langmuir, 20, 11748-11755 (2004)
[25] Sidorenko A., Minko S., Karin S.M., Heinz D., Manfred S. “Switchinge of Polymer Brushes”, Langmuir, 15, 8349-8355 (1999)
[26] Soga K. G., Zuckermann M. J., Guo H. “Binary Polymer Brush in a Solvent”, Macromolecules, 29, 1998-2005 (1996)
[27] Singh C., Pickett G. T., Balazs A. C.“Interactions between Polymer -Coated Surfaces in Poor Solvents. Surfaces Grafted with A and B Homopolymers”, Macromolecules, 29, 7559-7570 (1996)
[28] Ionov L., Zdyrko B., Sidorenko A., Minko S., Klep V., Luzinov I., Stamm1 M. “Gradient Polymer Layers by Grafting To Approach”, Macromol. Rapid Commun., 25, 360-365 (2004)
[29] Schild H. G. “Poly(N-isopropylacrylamide): experiment, theory and application”, Polym. Sci., 17, 163-249 (1992)
[30] Sun T., Wang G., Feng L., Liu B., Ma Y., Jiang L., Zhu D. “Reversible Switching between Superhydrophilicity and Superhydrophobicity”, Angew. Chem. Int. Ed., 43, 357-360 (2004)
[31] Azzaroni O., Brown A. A., Huck W. T. S. “UCST Wetting Transitions of Polyzwitterionic Brushes Driven by Self-Association”, Angew. Chem. Int. Ed., 45, 1770-1774 (2006)
[32] Houbenov N., Minko S., Stamm M. “Mixed Polyelectrolyte Brush from Oppositely Charged Polymers for Switching of Surface Charge and Composition in Aqueous Environment”, Macromolecules, 36, 5897-5901 (2003)
[33] Mikhaylova Y., Ionov L., Rappich J., Gensch M., Esser N., Minko S. “In Situ Infrared Ellipsometric Study of Stimuli-Responsive Mixed Polyelectrolyte Brushes”, Anal. Chem., 79, 7676-7682 (2007)
[34] Motornov M., Sheparovych R., Katz E., Minko S. “Chemical Gating with Nanostructured Responsive Polymer Brushes: Mixed Brush versus Homopolymer Brush”, ACS nano, 2, 41-52 (2008)
[35] Ji S., Liu G., Zheng F., Craig G. S. W., Himpsel F. J., Nealey P. F. “Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends”, Adv. Mater., 20, 3054-3060 (2008)
[36] Liu G., Ji S., Stuen K. O., Craig S. W. G., Nealey P. F. “Modification of a polystyrene brush layer by insertion of poly(methyl Methacrylate) molecules” , J. Vac. Sci. Technol. B, 27, 3038-3042 (2009)
[37] Zhou F., Biesheuvel P. M., Choi E. Y., Shu W., Poetes R., Steiner U., Huck W. T. S. “Polyelectrolyte Brush Amplified Electroactuation of Microcantilevers”, Nano Lett., 8, 725-730 (2008)
[38] Tokareva I., Minko S., Fendler J. H., Hutter E. “Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy”, J. Am. Chem. Soc., 126, 15950-15951 (2004)
[39] Mendes P. M. “Stimuli-responsive surfaces for bio-applications”, Chem. Soc. Rev., 37, 2512-2529 (2008)
[40] Chen T., Ferris R., Zhang J., Ducker R., Zauscher S. “Stimulus- responsive polymer brushes on surfaces: Transduction mechanisms and applications”, Polym. Sci., 35, 94-112 (2010)
[41] stuart M. A. C., Huck W. T. S., Genzer J., Muller M., ober C.,Stamm M., Sukhorukov G. b., Szleifer I., Tsukruk V. V., Urban M.,Winnik F., Zauscher S., Luzinov I., Minko S. “Emerging applications of stimuli-responsive polymer materials”, Nature Mater., 9, 101-113 (2010)
[42] Zhou F., Huck W. T. S.“Surface grafted polymer brushes as ideal building blocks for smart surfaces”, Phys. Chem. Chem. Phys., 8, 3815-3823 (2006)
[43] Bawa P., Pillay V., Choonara Y. E., Toit C. D. “Stimuli- responsive polymers and their applications in drug delivery”, Biomed. Mater., 4, 022001-1-022001-15 (2009)
[44] Yu K., Wang H., Han Y. “Motion of Integrated CdS Nanoparticles by Phase Separation of Block Copolymer Brushes”, Langmuir, 23, 8957- 8964 (2007)
[45] Santer S., He J. R. R.“Motion of nano-objects on polymer brushes”, Polymer, 45, 8279-8297 (2004)
[46] Zhouab F., Huck W. T. S. “Three-stage switching of surface wetting using phosphate-bearing polymer brushes”, Chem. Commun., 5999- 6001 (2005)
[47] Bunker B. C., Huber D. L., Kent M. S., Yim H., Curro J. G.,Manginell R. J., Kushmerick J. G., Lopez G. P., Mendez S. “Switchable Hydrophobic-Hydrophilic Surfaces” , Sand Report (2002)
[48] Azzaroni O., Brown A. A., Huck W. T. S. “Tunable Wettability by Clicking Counterions Into Polyelectrolyte Brushes”, Adv. Mater., 19, 151-154 (2007)
[49] Jenkins A. D., Kratochvfl P., Stepto R. F. T., Suter U. W. “GLOSSARY OF BASIC TERMS IN POLYMER SCIENCE”, Pure & Appl. Chem., 68, 2287-2311 (1996)
[50] Matsen M. W., Bates F. S. “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules, 29, 1091-1098 (1996)
[51] Fredrickson G. H. Liu A. J. “Entropic Corrections to the Flory- Huggins Theory of Polymer Blends: Architectural and Conformational Effects”, Macromolecules, 27, 2503-2511 (1994)
[52] Tseng Y. C., Darling S. B. “Block Copolymer Nanostructures for Technology”, Polymers, 2, 470-489 (2010)
[53] Bates F. S., Fredrickson G. H. “Block Copolymers-Designer Soft Materials”, Phys. Today, 52, 32-38 (1999)
[54] Cheng J. Y., Ross C. A., Smith H. I., Thomas E. L.“Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up”, Adv. Mater., 18, 2505-2521 (2006)
[55] Ting X., Craig J. H., Thomas P. R. “Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films”, Macromolecules, 38, 2802-2805 (2005)
[56] Ham I. W., “Ordering in Thin Films of Block Copolymers: Fundamentals to Potential Applications”, Polym. Sci., 34, 1161-1210 (2009)
[57] Knoll A., Horvat A., Lyakhova K. S., Krausch G., Sevink G. J. A., Zvelindovsky A.V., Magerle R. “Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers”, Phys. Rev. Lett., 89, 035501-1 -035501-4 (2002)
[58] Horvat A., Lyakhova K. S., Sevink G. J. A., Zvelindovsky A. V. “Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling”, J. Chem. Phys., 120, 1117-1126 (2004)
[59] Tsarkova L., Knoll A., Krausch G., Magerle R. “Substrate-Induced Phase Transitions in Thin Films of Cylinder-Forming Diblock Copolymer Melts”, Macromolecules, 39, 3608-3615 (2006)
[60] Sivaniah E., Hayashi Y., Matsubara S., Kiyono S., and Hashimoto T.“Symmetric Diblock Copolymer Thin Films on Rough Substrates. Kinetics and Structure Formation in Pure Block Copolymer Thin Films”, Macromolecules, 38, 1837-1849 (2005)
[61] 陳哲雄,林俊勳,林紋瑞,吳靖宙 “原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易操作手冊” (2005)
[62] Kovalev A., Shulha H., Lemieux M., Myshkin N., Tsukruk V.V. “Nanomechanical probing of layered nanoscale polymer films with atomic force microscopy” , J. Mater. Res., 19, 716-728 (2004)
[63] Bowen D. K., Tanner B. K.,“High Resolution X-ray Diffractometry and Topography” (2002)
[64] Gibaud A., Hazra S.,“X-ray reflectivity and diffuse scattering”, Current Sci., 78, 1467-1477 (2000)
[65] Stephen B. R., Ashok K. K., Tobin J. M.“Self-Assembled Chromophoric NLO-Active Monolayers. X-ray Reflectivity and Second-Harmonic Generation as Complementary Probes of Building Block-Film Microstructure Relationships” , Langmuir, 12, 4218-4223(1996)
[66] Sheller N. B., Petrash S., Foster M. D.“Atomic Force Microscopy and X-ray Reflectivity Studies of Albumin Adsorbed onto Self-Assembled Monolayers of Hexadecyltrichlorosilane”, Langmuir, 14, 4535-4544 (1998)
[67] Hans J. W.“Characterization of solid catalysts” (2010)
[68] Kikuma J., Tonner B.P “XANES spectra of a variety of widely used organic polymers at the C K-edge”, Electron Spectroscopy and Related Phenomena, 82, 53-60 (1996)
[69] Ade H. , Hitchcock A. P.“NEXAFS microscopy and resonant scattering:Composition and orientation probed in real and reciprocal space”, Polymer, 49, 643-75 (2008)
[70] Dannenberger O., Weiss K., Himmel H. J., Jiger B., Buck M., “An orientation analysis of differently endgroup-functionalised alkanethiols adsorbed on Au substrates”, Thin Solid Films, 307 ,183-191 (1997)
[71] Müller B. P. “A Basic Introduction to Grazing Incidence Small-Angle X-Ray Scattering”, Lect. Notes Phys., 776, 61-89 (2009)
[72] Reiter G., Auroy P., Auvray L. “Instabilities of Thin Polymer Films on Layers of Chemically Identical Grafted Molecules”, Macromolecules, 29, 2150-2157 (1996)
[73] Zhang X., Lee F. K., Tsui O. K. C. “Wettability of End-Grafted Polymer Brush by Chemically Identical Polymer Films”, Macromolecules, 41, 8148-8151 (2008)
[74] Kim B., Ryu D. Y. “Dewetting of PMMA on PS-Brush Substrates”, Macromolecules, 42, 7919-7923 (2009)
[75] Vandenbrouck F., Valignat M. P., Cazabat A. M. “Thin Nematic Films: Metastability And Spinodal Dewetting”, Phys. Rev. Lett., 82, 2693-2696 (1999)
[76] Henn G., Bucknall D. G., Stamm M., Vanhoorne P.,rome R. J. “Chain End Effects and Dewetting in Thin Polymer Films”, Macromolecules, 29, 4305-4313 (1996)
[77] Suh H. S., Kang H.,§Nealey P. F., Char K.“Thickness Dependence of Neutral Parameter Windows for Perpendicularly Oriented Block Copolymer Thin Films” , Macromolecules, 43, 4744-4751 (2010)