跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉佳琳
Chia-lin Liu
論文名稱: 高溫高壓水熱合成含鹼土元素的矽酸鈾之晶體結構與性質研究
High-Temperature, High-Pressure Hydrothermal Synthesis, Crystal Structures and Properties of Alkaline Earth Metal-Containing Uranium Silicates
指導教授: 李光華
Kwang-hwa Lii
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 高溫高壓水熱合成矽酸鹽晶體結構單晶結構解析鹼土元素
外文關鍵詞: Uranium, High-Temperature, High-Pressure, Hydrothermal Synthesis, Silicate, Crystal Structure, Single-Crystal X-ray Diffraction, Alkaline Earth Metal
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以高溫高壓水熱法合成三個新穎的鈾矽酸鹽化合物Ba10[(UO2)2(Si2O7)4] (A1)、K2Ca4[(UO2)(Si2O7)2] (A2) 以及K4Ca[(UO2)Si4O12] (A3)。藉由單晶X光繞射方法鑑定出化合物的晶體結構,以粉末X光繞射分析儀確定樣品純度以供後續分析,再以X光能量散布分析、光致放光光譜和倍頻訊號測量等方式進行定性及光學性質的分析。
    化合物A1為六價的鈾矽酸鹽,結構中矽酸鹽以Sorosilicate [Si2O7]的形式和UO6以共角的方式相連形成在ac平面的二維層狀結構,Ba2+ 陽離子則座落在層與層之間。此化合物為第一個利用高溫高壓水熱法合成的含鋇離子的鈾矽酸鹽。化合物A2為六價的鈾矽酸鹽,結構中矽酸鹽以Sorosilicate [Si2O7]的形式用共角的方式連接相鄰的兩個UO6多面體,並形成沿著a軸延伸的一維鏈狀結構,此結構在鈾矽酸鹽的研究中是相當罕見的一維結構。化合物A3為六價的鈾矽酸鹽,結構中矽酸鹽以 [Si4O12] 連接UO6多面體形成三維的骨架結構, K離子分布在結構的孔道中,而Ca2+ 離子則座落在鈾氧單元的軸位方向,這種排列方式形成沿著c軸的 -U-O-Ca-O-U-鏈。


    Three new alkaline earth metal-containing uranium silicates, Ba10[(UO2)2(Si2O7)4] (A1),K2Ca4[(UO2)(Si2O7)2] (A2) and K4Ca[(UO2)Si4O12] (A3), were synthesized by the high-temperature, high-pressure hydrothermal method, and structurally characterized by powder and single X-ray diffraction. These compounds were further characterized by EDS, PL and SHG.
    Compound A1 is a barium-containing uranium silicate. The crystal structure consists of Sorosilicates [Si2O7] which connect adjacent UO6 tetragonal bipyramids via four equatorial oxygen atoms to form 2D layers in ac plane. The Ba2+ cations are located at sites in the intralayer and interlayer regions. This compound is the first Ba-containing uranium silicate synthesized using the high-temperature, high-pressure hydrothermal method.
    Compound A2 is a uranium(VI) silicate. The structure consists of UO6 tetragonal bipyramids which are linked by Sorosilicate [Si2O7] units to form 1D chains along the a axis. The Ca2+ and K+ cations are located at sites in the interchain regions. This 1D chain structure is very rare in the literature.
    Compound A3 is a uranium(VI) silicate. It’s structure consists of [Si4O12] units connecting with four UO6 tetragonal bipyramids to form a 3D framework. The K+ cations are located in the channels and the Ca2+ cations are located between each set of two UO6 polyhedra in the c direction. This arrangement produces a linear -U-O-Ca-O-U- chain along the c axis.

    摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 XI 附錄之表目錄 XII 第一章 緒論 1 1-1簡介 1 1-1-1鈾的歷史 1 1-1-2鈾的氧化態 3 1-1-3天然矽酸鈾礦與人工合成矽酸鈾 14 1-2 論文研究動機 17 1-3 合成方法 18 1-3-1 水熱法 18 1-3-2 藥品一覽表 21 1-4 鑑定方法 22 1-4-1 儀器測量簡介 22 1-4-2 單晶X光繞射儀與解構分析 23 1-4-3 粉末X光繞射儀 (PXRD) 29 1-4-4 X光能量散佈分析 (EDS) 30 1-4-5 倍頻訊號測量 (SHG) 31 1-4-6 放光光譜 (PL) 32 1-5 研究成果摘要 34 第二章 含鹼土元素的矽酸鈾 35 2-1簡介 35 2-2實驗部分 37 2-2-1 Ba10[(UO2)2(Si2O7)4] (A1) 合成條件 37 2-2-2 K2Ca4[(UO2)(Si2O7)2] (A2) 合成條件 38 2-2-3 K4Ca[(UO2)Si4O12] (A3)合成條件 39 2-2-4 Ba10[(UO2)2(Si2O7)4] (A1) 單晶X光結構解析 40 2-2-5 K2Ca4[(UO2)(Si2O7)2] (A2) 單晶X光結構解析 42 2-2-6 K4Ca[(UO2)Si4O12] (A3) 單晶X光結構解析 44 2-3 化合物鑑定與性質測量 46 2-3-1 粉末X光繞射分析 46 2-3-2 X光能量散佈光譜分析 48 2-3-3 倍頻訊號測量 50 2-3-4 放光光譜測量 52 2-4 結果與討論 55 2-4-1 Ba10[(UO2)2(Si2O7)4] (A1) 之結構描述與討論 55 2-4-2 K2Ca4[(UO2)(Si2O7)2] (A2) 之結構描述與討論 59 2-4-3 K4Ca[(UO2)Si4O12] (A3) 之結構描述與討論 63 第三章 結論 70 參考文獻 71 附錄 73

    [1]Burns, P. C. Rev. Mineral. 1999, 38, 23-90.
    [2]Wang, Z.; Wang, S.; Ling, J.; Morrison, J. M.; Burns, P. C. Inorg. Chem. 2012, 51, 7185-7191.
    [3]Liu, H.-K. ; Lii, K.-H. Inorg. Chem. 2013, 52, 9172-9174
    [4](a) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5th ed; JohnWiley & Sons: New York, 1988.; (b) Ilton, E. S.; Haiduc, A.; Cahill, C. L.; Felmy,A. R. Inorg. Chem. 2005, 44, 2986.
    [5]Chen, C.-S.; Lee, S.-F.; Lii, K.-H. J. Am. Chem. Soc. 2005, 127, 12208-12209
    [6]Lin, C.-H.; Chen, C.-S. ; A. A. Shiryaev,Ya. V. Zubavichus; Lii, K.-H. Inorg. Chem. 2008, 47, 4445-4447
    [7](a) Stieff, L. R.; Stern, T. W.; Sherwood, A. M. Science 1955, 121, 608-609. (b) Speer, J. A. Rev. Mineral. Geochem. 1980, 5, 113-135.
    [8]Drew G. L.; Fein, J. B.; Burns, P. C.; Szymanowskia , J. E. S.; Conversea , J. J. Chem. Thermodynamics, 2008, 40, 980-990
    [9]Liu, H.-K. ; Lii, K.-H. Inorg. Chem. 2011, 50, 5870–5872
    [10]Morrison,G. ; Ramanantoanina, H.; Urland ,W.; Smith , M. D.; Loye, H.-C. zur, Inorg. Chem. 2015, 54, 5504–5511
    [11]Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751–767
    [12]Cross, J. N.; Villa, E. M.; Darling, V. R.; Polinski, M. J.; Lin, J.; Tan,X.; Kikugaxa N.; Shatruk, M.; Baumbach, R.; Albrecht-Schmitt T. E. Inorg. Chem 2014, 53, 7455-7466
    [13]Lee, C.-S.; Lin, C.-H.; Wang ,S.-L.; Lii, K.-H. Angew. Chem. Int. Ed. 2010, 49, 4254 –4256
    [14]Chen, C.-H.; Nguyen, Q. B; Lee, C.-S.; Lii, K.-H. Inorg. Chem. 2012, 51, 7463-7465
    [15]Chang, Y.-C.; Chang, W.-J.; Boudin S.; Lii, K.-H. Inorg. Chem. 2013, 52, 7230−7235
    [16]Shashkin, D.P.; Lur'e, E.A.; Belov, N.V. Kristallografiya.1974, 19, 958-963
    [17]Blaton, N.; Vochten, R.; Peters, O.M.; van Springel, K. Neues Jahrbuch fuer Mineralogie. Monatshefte, 1999, 253-264
    [18]Wang, X.; Huang, J.; Liu, L.; Jacobson, A.J. J. Mater. Chem. 2002, 12, 406–410
    [19]Lee, C.-S.; Wang, S.-L.; Lii, K.-H. Chemical Journal Of Chinese Universities-chinese 2011, 32, 605-608
    [20]Chen, C.-S.; Kao H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 935-940
    [21]Huang, J.; Wang, X.; Jacobson, A. J. J. Mater. Chem. 2003, 13, 191–196
    [22]Read, C. M.; Smith, M. D.; Withers, R.; Loye,H.-C. Inorg. Chem. 2015, 54, 4520−4525
    [23]Liu, H.-K.; Chang,W.-J.; Lii, K.-H. Inorg. Chem. 2011, 50, 11773-11776
    [24]Chen, C.-S.; Chiang, R.-K.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2005, 44, 3914-3918
    [25]Lee, C.-S.; Wang,S.-L. ; Chen,Y.-H.; Lii, K.-H. Inorg. Chem. 2009, 48, 8357–8361
    [26]Plaisier, J. R.; IJdo, D. J. W.; Donega,C. de M.; Blasse,G. Chem. Mater. 1995, 7, 738-743
    [27]Lee, C.-S.; Wang,S.-L. ; Lii, K.-H. J. Am. Chem. Soc. 2009, 131, 15116-15117
    [28](a) Stohl, F.V.; Smith, D.K.jr. Am. Mineral. 1981, 66, 610-625
    (b) Ryan, R.R.; Rosenzweig, A. Cry.Stru.Comm.1977, 6, 611-615
    (c) Rosenzweig, A.; Ryan, R.R. Am. Mineral. 1975, 60, 448-453
    (d) Smith, D.K.jr.; Stohl, X.V. Geo. Soc. Am.,Memoir 1972, 135, 281-288
    (e) Ginderow, D. Act. Cry. Sec. C: Cry.Stru.Comm.1988, 44, 421-424
    (f) Plasil, J.; Fejfarova, K.; Cejka, J.; Dusek, M.; Skoda, R.; Sejkora, J. Am. Mineral. 2013,98, 718-723
    (g) Fejfarova, K.; Plasil, J.; Yang, H.; Cejka, J.; Dusek, M.; Downs, R. T.; Barkley, M. C.; Skoda, R. Am. Mineral. 2012, 97, 750-754
    (h)Mokeeva, V.I. Kristallografiya 1964, 9, 277-278
    [29]Rabenau, A. Angew. Chem. Int. Ed. 1985, 24, 1026.
    [30]Kennedy, G. C. Am. J. Sci. 1950, 248, 540
    [31]Ladd, M. F.; Palmer, R. A. Structure Determination by X-ray Crystallography, Plenum, New York, 1994
    [32]Burns, P. C.; Ewing, R. C.; Hawthorne, F. C. Can. Mineral. 1997, 35, 1551
    [33]Brown, I. D.; Altermann, D. Acta Crystallogr. 1985, 41, 244.
    [34](a) Smith, D. K.; Gruner, J. W.; Lipscomb, W. N. Am. Mineral. 1957, 42, 594-618. (b) Viswanathan, K.; Harnett, O. Am. Mineral. 1986, 71, 1489-1493.
    [35]Ryan, R. R.; Rosenzweig, A. Cryst. Struct. Commun. 1977, 6, 611-615.
    [36](a) Burns, P.; Can. Mineral. 2001, 39, 1153-1160. (b) Plasil, J.; Fejfarova, K.; Cejka, J.; Dusek, M.; Skoda, R.; Sejkora, J. Am. Mineral. 2013, 98, 718-723.
    [37]Sheldrick, G. M. SAINT, Version 7.68A, University of Göttingen, Germany, 2009.
    [38]Sheldrick, G. M. SADABS, Version 2008/1, University of Göttingen, Germany, 2008.
    [39]Liu, G.; Beitz, J. V. in The Chemistry of the Actinide and Transactinide Elements, Eds. Morss, L. R.; Edelstein, N. M.; Fuger, J. 2006, Springer, Heidelberg, pp 2088.
    [40]Brachmann, A.; Geipel, G.; Bernhard, G.; Nitsche, H. Radiochim. Acta 2002, 90, 147-153.
    [41]Donnay, G.; Allmann, R. Am. Mineral. 1970, 55, 1003
    [42]Guesdon, A.; Chardon, J.; Provost, J.; Raveau, B. J. Solid State Chem. 2002, 165, 89-93

    QR CODE
    :::