跳到主要內容

簡易檢索 / 詳目顯示

研究生: 安尼舍帝
Anisetty S. K. A. V. P. Rao
論文名稱: Impacts of GPS Radio Occultation Data on Severe Weather Prediction
Anisetty S. K. A. V. P. Rao
指導教授: 黃清勇
Ching-Yuang Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 151
中文關鍵詞: GPSRadio OccultationMei-Yu FrontSSM/IQuikSCATCyclone GonuBending AngleRefractivityExess Phase
外文關鍵詞: GPS, Radio Occultation, Mei-Yu Front, SSM/I, QuikSCAT, Cyclone Gonu, Bending Angle, Refractivity, Exess Phase
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ABSTRACT
    Global Position System (GPS) radio occultation (RO) soundings are assimilated to
    explore the impacts of GPS RO data on prediction of severe weather systems such as
    super cyclone Gonu (2007) over the northern Indian Ocean and Mei-yu frontal (2012)
    rainfall over Taiwan. A series of experiments were conducted using the advanced
    Weather Research and Forecasting (WRF) model with three dimensional variational
    method (3DVAR) to assimilate GPS RO refractivity from FORMOSAT-3/COSMIC
    (hereafter refer as GPS) and other datasets in order to verify the relative impact of GPS
    RO soundings.
    For the study of cyclone Gonu, we use Special Sensor Microwave Imager (SSM/I)
    retrieved precipitable water and near-surface oceanic wind speed, and radiosonde
    sounding (GTS), QuikSCAT derived winds, bogus vortex along with GPS RO data.
    Significant differences in cyclone track and intensity prediction are exhibited in
    various assimilations. GPS-cyc (GPS cyclic) outperformed well when compared to all
    other simulations till day 3 with the smallest cross-track error, SSM/I experiment obtains
    the strongest cyclone intensity. Sensitivity tests were also conducted to identify which
    GPS RO sounding plays a more crucial role in track prediction. It was found that the RO
    soundings in the vicinity of Gonu cyclone appear to modify the environmental conditions
    that result in a later development of a couplet of high and low pressure leading to an
    impact on track prediction, but the sounding closest to the cyclone center exhibits the
    largest contribution. Sensitivity experiments indicate that the retrieved GPS data
    information at upper levels with initial colder temperature increments indeed contributes
    iii
    more to improvement on track prediction. The improvement will not degrade until only
    the initial RO sounding information above 14 km height is retained in the model.
    Severe rainfall associated with a Mei-yu frontal system in Taiwan is studied using
    three different observational operators such as local bending angle, local refractivity, and
    non-local refractivity. The assimilations of the RO data are found beneficial to the
    forecast of severe rainfall associated with Mei-yu frontal system in Taiwan. Distributions
    of major rainfall in northern Taiwan on the second day, in particular, best benefit the
    performance of the local bending angle operator, followed by local refractivity operator.
    Both the operators appear to produce mostly larger positive moisture increments than the
    non-local operator. We found that the impact of RO data results from several critical RO
    observations near Mongolia and northern China. This study is the first attempt to provide
    an inter-comparison among the three RO operators, and show the feasibility of model
    assimilation with local bending angle.


    摘 要
    全球定位系統掩星(GPS RO)觀測資料於本研究中被同化於模式中,進一
    步想了解其對災害性天氣系統的影響,如北印度洋的超級氣旋Gonu(2007)和
    通過台灣地區的梅雨鋒面(2012)。本研究一系列的實驗使用WRF(Weather
    Research and Forecasting )模式和三維變分資料同化方法(3DVAR),並於研究
    中同化福爾摩沙衛星三號(FORMOSAT-3COSMIC)GPS RO折射率觀測資料和其
    他用來驗證GPS RO的影響的觀測資料。
    於颶風Gonu 的研究中, 我們使用SSM/I 衛星觀測資料(Special Sensor
    Microwave Imager)、傳統觀測資料(GTS)、QuikSCAT衛星觀測資料和包含GPS
    RO折射率觀測資料的虛擬渦漩。於本實驗中,同化不同的觀測資料在氣旋路徑
    和強度預報有顯著不同,比較所有實驗路徑誤差,其中GPS-cyc(GPS cyclic)之氣
    旋路徑誤差最小,而同化SSM/I衛星觀測資料模擬的氣旋強度最強。在敏感度實
    驗中我們發現Gonu氣旋附近的GPS觀測資料修正了其環境條件,進一步造成對路
    徑預測的影響,其中最接近氣旋中心的探空資料表現出最大的貢獻。敏感度實驗
    中指出,GPS在模式高層初始場較冷的溫度增量對於路徑預測的改善有顯著的影
    響,進一步確立同化GPS觀測資料於路徑預報中扮演著重要的角色。
    梅雨(2012)鋒面系統數個實驗中,於模式中同化了GPS 掩星觀測資料並
    使用三個不同的觀測算子如局地折射率(Local Reflectivity 簡稱REF)、局地偏折
    角(Local Bending Angle 簡稱LBA)和非局地折射率(Nonlocal Refractivity 簡稱
    EPH),試圖了解同化不同的同化運算子對於梅雨預報的影響。我們發現同化掩
    星資料對於梅雨(2012)個案預報結果皆有助益,其中LBA 實驗模擬第二天降雨
    結果最接近觀測,其次為REF 實驗,這兩組實驗的模式初始場水氣增量皆比EPH
    實驗大,其中我們發現數個位在蒙古和中國北方的掩星觀測資料扮演關鍵的角色。
    在本研究中為國內首次嘗試這三種不同的掩星觀測算子間的比較,並表現模式同
    化局地篇折角的可行性。

    TABLE OF CONTENTS Abstract Chinese i Abstract English ii Dedication iv Acknowledgments v Table of Contents x List of figures xiii List of Tables xx CHAPTER 1 INTRODUCTION 1 1.1 General Introduction 1 1.2 Brief History of Global Position System Radio Occultation Technique 4 1.3 FORMOSAT-3/ COSMIC 5 1.4 Need of the present research 6 1.5 Motivation 8 CHAPTER 2 MODEL AND METHODOLOGY 11 2.1 WRF modeling System 11 2.1.1 WRF Preprocessing System (WPS) 13 2.1.2 WRF-Var or WRFDA 13 2.1.3 WRF Model 13 2.1.4 Post-processing 14 2.2 WRF 3DVAR 14 2.3 The Methodology 16 2.4 Bogus Data Assimilation 19 2.5 The Equitable Threat Score (ETS) 21 CHAPTER 3 DATA AND CASE EXPERIMENTS 22 3.1 NCEP AVN 22 3.2 Global Telecommunication System (GTS) 22 3.3 FORMOSAT-3/COSMIC (GPS) 22 xi 3.4 Special Sensor Microwave Imager (SSM/I) 23 3.5 QuikSCAT 24 3.6 Bogus Vortex 24 3.7 Case Experiments 25 3.7.1 The Super Cyclone Gonu 25 3.7.2 The Mei-yu Front 26 CHAPTER 4 THE SUPER CYCLONE GONU 28 4.1 Description of Experiments 28 4.2 Analyses of Initial Increments 29 4.2.1 Analyses of Moisture and Temperature 29 4.2.2 Analysis of Wind 31 4.3 Verification of the Model Results 32 4.4 Cyclone Intensity 34 4.5 Cyclone Track 34 4.6 Mean Track Errors 36 4.7 Cyclic Experiments 37 4.8 Possible Mechanisms of Predicted Tracks 38 4.9 Sensitivity Experiments 38 4.9.1 Sensitivity Tests for GPS RO Soundings 38 4.9.2 Sensitivity with Bogus Vortex 40 4.9.3 Sensitivity Tests for QuikSCAT Data 41 CHAPTER 5 MEI-YU FRONT 43 5.1 Mei-yu Front 43 5.2 Description of Experiments 43 5.3 Analysis and Discussion 44 5.3.1 Analysis of Initial Increments 44 5.3.2 Analysis of Winds, Divergence and Cloud Liquid Water 46 5.3.3 Comparison of Accumulated Rainfall between CTL, GTS and LBA 47 5.3.4 Intercomparison of Accumulated Rainfall from LBA, REF and EPH 48 xii 5.3.5 Cyclic Experiments 49 5.4 Sensitivity Experiments 50 5.4.1 Sensitivity Experiment with GPS 50 5.4.2 Sensitivity Experiments with Moisture and Temperature 51 5.4.3 Sensitivity Experiment with Microphysics 51 5.4.4 Sensitivity Experiment with Background Error 52 5.5 Verification of Equitable Threat Score (ETS) 52 CHAPTER 6 CONCLUSIONS 54 References 59 Tables 72 Figures 79

    REFERENCES
    Aberson, S. D., 2002: Two years of operational hurricane synoptic surveillance. Wea.
    Forecasting, 17, 1101–1110.
    Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone
    track forecast guidance. Mon. Wea. Rev., 131, 1613– 1628.
    Aberson, S. D., and J. L. Franklin, 1999: "Impact on hurricane track and intensity
    forecasts of GPS dropwindsonde observations from the first-season flights of the
    NOAA Gulfstream-IV jet aircraft." Bull. Amer. Meteor. Soc., 80, 421-427.
    Anisetty, S.K.A.V.P. R., C-Y. Huang and S.-Y. Chen, 2014a: Impact of FORMOSAT-
    3/COSMIC radio occultation data on the prediction of super cyclone Gonu (2007):
    a case study. Nat Hazards, 70:1209–1230, DOI10.1007/s11069-013-0870-0.
    Anisetty S. K. A. V. P. R., P. S. Brahmanandam, G. Uma, A. N. Babu, C.- Y. Huang, G.
    A. Kumar, S.T. Ram, H.-L Wang and Y.- H. Chu, 2014b: Planetary-scale wave
    structures of earth’s Atmosphere using COSMIC observations. Acta. Meteor. Sinica,
    27, doi:10.1007/s13351-014-0101-y. (in press)
    Anlauf, H., D. Pingel, and A. Rhodin, 2011: Assimilation of GPS radio occultation data
    at DWD. Atmos. Meas. Tech., 4, 1105–1113.
    Anthes and Coauthors, 2008: The COSMIC/FORMOSAT-3 Mission: Early results. Bull.
    Amer. Meteor. Soc., 89, 313-333.
    Anthes, R. A., 2011: Exploring Earth’s atmosphere with radio occultation: contributions
    to weather, climate and space weather. Atmos. Meas. Tech., 4, 1077–1103.
    Atlas, R.,and Coauthors, 2001:The effects of marine winds from scatterometer data on
    weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 1965–1990.
    60
    Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A threedimensional
    variational data assimilation system for MM5: Implementation and
    initial results. Mon. Wea. Rev., 132, 897-914.
    Barker, D.M., W.Huang, Y.-R.Guo, and A.Bourgeois, 2003: AThree-Dimensional
    Variational (3DVAR) Data Assimilation System For Use With MM5. NCAR Tech
    Note, NCAR/TN453+STR, 68pp. [Available from UCAR Communications,
    P.O.Box3000, Boulder, CO, 80307.].
    Brahmanandam, P. S, , Y. H. Chu, Kong-Hong Wu, His-Pu Hsia, C. L. Su and G.
    Uma, 2011:Vertical and longitudinal electron density structures of equatorial E
    and F-regions, Ann. Geophys., 29, 81-89.
    Brahmanandam, P. S, G. Uma, J. Y. Liu, Y. H. Chu, N. S. M. P. Latha Devi, and Y.
    Kakinami, 2012: Global S4 index variations observed using FORMOSAT-
    3/COSMIC GPS RO technique during a solar minimum year, J. Geophys. Res., 117,
    A09322, doi:10.1029/2012JA017966.
    Brahmanandam, P. S, Y. H. Chu, and J. Liu, 2010: Observations of equatorial Kelvin
    wave modes in FORMOSAT- 3/COSMIC GPS RO temperature profiles, Terr.
    Atmos. Oceanic Sci., 21(5), 829-840.
    Burpee, R. W., J. L. Franklin, S. Lord, R. E. Tuleya, and S. Aberson, 1996: The impact of
    omega dropwindsonde on operational hurricane track forecast models. Bull. Amer.
    MeteorSoc., 77, 925–933.
    Chen, C-S., and Y.-L. Chen, 2003: The Rainfall Characteristics of Taiwan. Mon. Wea.
    Rev., 131, 1323- 1341.
    61
    Chen, J.-G., and C.-Y.Tsay, 1980: The influence of the Mei–Yu systems on the northern
    Taiwan (in Chinese with English abstract). Atmos. Sci., 7, 49–58.
    Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, and S. Sokolovskiy, 2010: Observational error
    estimation of FORMOSAT-3/ COSMIC GPS radio occultation data. International
    Workshop on Occultations for Probing Atmosphere and Climate, 6-11 September,
    2010, Graz, Austria.
    Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, and S. Sokolovskiy, 2011: Observational error
    estimation of GPS radio occultation refractivity and excess phase data. Mon. Wea.
    Rev, 139, 853-865.
    Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo and S. Sokolovskiy, 2009: Assimilation
    of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with
    WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos.
    Oceanic Sci., 20, 133-154.
    Chien, F.-C., and Y.-H. Kuo, 2010: Impact of FORMOSAT-3/COSMIC GPS radio
    occultation and dropwindsonde data on regional model predictions during the 2007
    Mei-yu season. GPS Solut., 14, 51–63, DOI10.1007/s10291-009-0143-2.
    Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio
    occultation receivers in weather forecasting. Wea. Forecasting, 25, 749–767.
    Cucurull, L., J.C. Derber, and R.J. Purser, 2013. A bending angle forward operator for
    global positioning system radio occultation measurements. J. Geophys. Res., 118:
    14-28, doi:10.1029/2012JD017782.
    62
    Cucurull, L., Y.-H. Kuo, D. Barker and S. R. H. Rizvi, 2006: Assessing the impact of
    simulated COSMIC GPS radio occultation data on weather analysis over the
    Antarctic: A case study. Mon. Wea. Rev.,134, 3283-3296.
    Figa, J., and A. Stoffelen, 2000: On the assimilation of ku-band scatterometer winds for
    weather analysis and forecasting. IEEE Trans. Geosci. and Remote Sens., 38, 1893–
    1902.
    Fisher, M., 2003: Background error covariance modeling. Seminar on Recent
    Development in Data Assimilation for Atmosphere and Ocean, 45–63, ECMWF.
    Hajj, G., Ao, C.O., Iijima, B.A., Kuang, D., Kursinski, E.R., Mannucci, A.J., Meehan,
    T.K., Romans, L.J., delaTorreJuarez, M., and Yunck, T.P., 2004: CHAMP and
    SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109,
    D06109, doi:10.1029/2003JD003909.
    Hajj, G.A., and L.J. Romans 1998: Ionospheric electron density profiles obtained with the
    Global Positioning System: Results from the GPS/MET experiment, Radio Sci., 33,
    175–190, doi:10.1029/97RS03183.
    Hajj, G.A., L.C.Lee, X.Pi, L.J.Romans,W.S. Schreiner, P.R.Straus, and C.Wang
    2000:COSMIC GPS ionospheric sensing and space weather, Terr. Atmos. Ocean.
    Sci., 11(1), 235–272.
    Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio
    occultation receivers. Atmos. Sci. Letter, 9, 111-118.
    Healy, S. B., A. M. Jupp, and C. Marquardt, 2005: Forecast impact experiment with GPS
    radio occultation measurements. Geophys. Res. Lett., 32, L03804.
    63
    Healy, S. B., and J.-N. Thepaut, 2006: Assimilation experiments with CHAMP GPS
    radio occultation measurements. Quart. J. Roy. Meteor. Soc., 132, 605-623.
    Hocke, K., 1997: Inversion of GPS meteorology data. Ann. Geophysicae, 15, 443–450.
    Hollinger, J., 1989: DMSP Special Sensor Microwave/Imager calibration/validation.
    Naval Research Laboratory, Final Rep., Vol.1, Washington, DC, 153pp.
    Hong, S.-Y., and Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an
    explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
    Hsiao, L.-F., C.-S. Liou, T.-C. Yeh, Y.-R. Guo, D.-S. Chen, K.-N. Huang, C.-T. Terng,
    and J.-H. Chen, 2010: A Vortex Relocation Scheme for Tropical Cyclone
    Initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 3298-3315,
    DOI:10.1175/2010MWR3275.1.
    Huang, C.-Y., Y.-H. Kuo, A S K A V P. Rao and S.-Y. Chen, 2007: The assimilation of
    GPS radio occultation data and its impact on rainfall prediction along the west coast
    of India during monsoon 2002. Pure and Applied Geophysics, 164, 1577-1591.
    Huang, C.-Y., Y.-H. Kuo, S.-H. Chen and F. Vandenberghe, 2005: Improvements on
    typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting,
    20, 931–953.
    Huang, C.-Y., Y.-H. Kuo, S.-Y. Chen, C.-T. Terng, F.-C. Chien, P.-L. Lin, M.-T. Kueh,
    S.-H. Chen, M.-J. Yang, C.-J. Wang, Anisetty S. K. A. V. Prasad Rao, 2010: Impact
    of GPS radio occultation data assimilation on regional weather predictions. GPS
    Solut., 14, 35–49.
    Ide,K.,P.Courtier,M.Ghil,andA.C.Lorenc,1997: Unified notation for data assimilation:
    Operational, sequential and variational. J. Met. Soc. Japan, 75,181–189.
    64
    Kliore, A.J., T.W. Hamilton, and D.L. Cain, 1964: Determination of some physical
    properties of the atmosphere of Mars from changes in the Doppler signal of a
    spacecraft on an earth occultation trajectory, Jet Propulsion Laboratory, Technical
    Report, Pasadena, CA, 32-674.
    Krishnamurti, T. N., H. S. Bedi, and K. Ingles, 1993: Physical initialization using SSM/I
    rain rates. Tellus,45A, 247–269.
    Krishnamurti, T. N., J.Xue, H.S.Bedi, K.Ingles and D.Oosterhof, 1991: Physical
    initialization for numerical weather prediction over the tropics. Tellus, 43, 53–81.
    Krishnamurti, T. N., R. Correa-Torres, G. Rohaly, and D. Oosterhof, 1997: Physical
    initialization and hurricane ensemble forecasts. Wea. Forecasting,12, 503–514.
    Krishnamurti, T. N., S. K. Roy Bhowmik, D. Oosterhof, and G. Rohaly, 1995: Mesoscale
    signatures within the Tropics generated by physical initialization. Mon. Wea.
    Rev.,123, 2771–2790.
    Krishnamurti, T. N., W. Han, B. Jha, and H. S. Bedi, 1998: Numerical prediction of
    Hurricane Opal. Mon. Wea. Rev.,126, 1347–1363.
    Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen and C.-J. Wang, 2009: Impact of
    GPS radio occultation soundings on prediction of Typhoon Bilis (2006) landfalling
    Taiwan. Terr. Atmos. Oceanic Sci., 20, 115-131.
    Kuo, Y.-H., S. V. Sokolovskiy, R. A. Anthes, and F. Vandenberghe, 2000: Assimilation
    of GPS radio occultation data for numerical weather prediction. Terr. Atmos.
    Oceanic Sci., 11, 157-186.
    65
    Kuo, Y.-H., X. Zou, and W. Huang, 1997: The impact of GPS data on the prediction of
    an extratropical cyclone: An observing system simulation experiment. J. Dyn.
    Atmos. Ocean, 27, 413-439.
    Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990: Prediction experiments
    of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon.
    Wea. Rev., 118, 2185–2198.
    Kursinski E, Hajj G, Schofield J, Linfield R, Hardy K, 1997: Observing earth’s
    atmosphere with radio occultation measurements using the Global Positioning
    System. J. Geophys. Res., 102: 23, 429–23, 465.
    Kursinski, E.R., Hajj, G.A., Bertiger, W.I., Leroy, S.S., Meehan, T.K., Romans, L.J.,
    Schofield, J.T., McCleese, D.J., Melbourne, W.G., Thornton, C.L., Yunck, T.P.,
    Eyre, J.R., and Nagatani, R.N, 1996: Initial results of radio occultation of Earth’s
    Atmosphere using the global positioning system. Science, 271, 1107–1110.
    Li, J.,Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during
    TAMEX. Mon. Wea. Rev., 125, 1060–1081.
    Liu, H., and X. Zou, 2003: Improvements to GPS radio occultation ray-tracing model
    and their impacts on assimilation of bending angle. J. Geophys. Res., 108 (D17),
    4548, doi:10.1029/2002JD003160.
    Liu, H., J. Anderson, Y.-H. Kuo, C. Snyder, and A. Caya, 2008: Evaluation of a nonlocal
    quasi-phase observation operator in assimilation of CHAMP radio occultation
    refractivity with WRF. Mon. Wea. Rev., 136, 242–256.
    66
    Lord, S. J., 1991: A bogussing system for vortex circulations in the National
    Meteorological Center global forecast model. Preprints 19th Conf. on Hurricane
    and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 328–330.
    Lorenc, A.C., 1986: Analysis methods for numerical weather prediction.
    Quart.J.Roy.Meteor. Soc., 112,1177–1194.
    Luntama, J.-P., G. Kirchengast, M. Borsche, U. Foelsche, A. Steiner, S. B. Healy, A. von
    Engeln, E. O’Clerigh, C. Marquardt, 2008: Prospects of the EPS GRAS mission for
    operational atmospheric applications. Bull. Am. Meteorol. Soc. 89, 1863–1875.
    DOI:10.1175/2008BAMS2399.1.
    Ma, Z., Y.-H. Kuo, B. Wang, W.-S. Wu, and S. Sokolovskiy, 2009: Comparison of local
    and non-local observation operators for the assimilation of GPS radio occultation
    refractivity data in the NCEP GSI system: an observing system simulation
    experiment. Mon. Wea. Rev., 137, 3575–3587.
    Madan, O.P., Mohanty, U.C., Iyenger, G, Shivhare, R.P., Prasad Rao, A.S.K.A.V., Sam,
    N.V., and Bhatla, R., 2005: Off shore trough and very heavy rain fall events along
    the west Coast of India during ARMEX-2002. Mausam, 56, 1, 37–48.
    Park, K., and X. Zou, 2004: Toward developing an objective 4DVAR BDA scheme for
    hurricane initialization based on TPC observed parameters. Mon. Wea. Rev., 132,
    2054-2069.
    Parrish, D.F., and J.C.Derber, 1992: The National Meteorological Center’s Spectral
    Statistical Interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763.
    67
    Poli, P., P. Moll, D. Puech, F. Rabier, and S. B. Healy, 2009: Quality control, error
    analysis, and impact assessment of FORMOSAT-3/COSMIC in numerical weather
    prediction. Terr. Atmos. Oceanic Sci., 20, 101-113.
    Poli, P., S. B. Healy, and D. P. Dee, 2010: Assimilation of Global Positioning System
    radio occultation data in the ECMWF ERA–Interim reanalysis. Q. J. R. Meteorol.
    Soc., 136, 1972–1990.
    Potula, B. S., Y.‐H. Chu, G. Uma, H.‐P. Hsia, and K.‐H. Wu, 2011: A global comparative
    study on the ionospheric measurements between COSMIC radio occultation
    technique and IRI model, J. Geophys. Res., 116,
    A02310,doi:10.1029/2010JA015814.
    Pu, Z.-X., and S. A. Braun, 2001: Evaluation of Bogus Vortex Techniques with Four-
    Dimensional Variational Data Assimilation. Mon. Wea. Rev., 129, 2223-2239.
    Rennie, M. P., 2010: The impact of GPS radio occultation assimilation at the Met Office.
    Q. J. R. Meteorol. Soc., 136, 116–131. DOI:10.1002/qj.521.
    Rocken, C., Anthes, R., Exner, M.,Hunt, D., Sokolovskiy, S., Ware, R., Gorbunov, M.,
    Schreiner, W., Feng, D., Herman, B., Kuo, Y.-H., and Zou, X, 1997:Analysis and
    validation of GPS/METdata in the neutral atmosphere. J. Geophys. Res., 102,
    29849–29866, doi:10.1029/97JD02400.
    Schreiner, W.S., S.V. Sokolovskiy, C. Rocken, and D.C. Hunt 1999: Analysis and
    validation of GPS/MET radio occultation data in the ionosphere, Radio Sci., 34(4),
    949–966, doi:10.1029/1999RS900034.
    68
    Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005a: Assessing the accuracy of linearized
    observation operator for assimilation of the Abel-retrieved refractivity: Case
    simulation with high-resolution weather model. Mon. Wea. Rev., 133, 2200-2212.
    Sokolovskiy, S., Y.-H. Kuo, and W. Wang, 2005b: Evaluation of a linear phase
    observation operator with CHAMP radio occultation data and high-resolution
    regional analysis. Mon. Wea. Rev., 133, 3053-3059.
    Steiner, A.K., Kirchengast, G., and Ladreiter, H.P., 1999: Inversion, error analysis, and
    validation of GPS/METoccultation data. Ann. Geophys., 17, 122–138,
    doi:10.1007/s00585-999-0122-5.
    Stoffelen, A., and D. Anderson, 1997: Scatterometer data interpretation: Measurement
    space and inversion. J. Atmos. Oceanic Technol., 14, 1298–1313.
    Teng, J.-H., C.-S. Chen, T.-C. C. Wang, and Y.-L. Chen, 2000: Orographic effects on a
    squall-line system. Mon.Wea.Rev., 128, 495–506.
    Trinh, V. T., and T. N. Krishnamuti, 1992: Vortex initialization for typhoon track
    prediction. Meteor. Atmos. Phys., 47, 117–126.
    Tuleya, R. E., and S. Lord, 1997: The impact of dropwindsonde data on GFDL hurricane
    model forecasts using global analyses. Wea. Forecasting, 12, 307–323.
    Uma, G., J. Y. Liu, S. P. Chen, Y. Y. Sun, P. S. Brahmanandam, and C. H. Lin, 2012: A
    comparison of the spread-F derived by International Reference Ionosphere and the
    S4 index observed by FORMOSAT-3/ COSMIC during the solar minimum period
    of 2007–2009, Earth Planets Space, 64, 467–471.
    Von Ahn, J. M., J. M. Sienkiewicz, P. S. Chang, 2006: Operational Impact of QuikSCAT
    Winds at the NOAA Ocean Prediction Center. Wea. Forecasting, 21,523-539.
    69
    Wang, Y., 1998: On the bogussing of tropical cyclones in numerical models: The
    influence of vertical structure. Meteor. Atmos. Phys., 65, 153–170.
    Ware, R., Exner,M., Feng,D., Gorbunov,M., Hardy, K., Herman, B., Kuo,Y., Meehan, T.,
    Melbourne, W., Rocken, C., Schreiner, W., Sokolovskiy, S., Solheim, F., Zou, X.,
    Anthes, R., Businger, S., and Trenberth, K, 1996: GPS sounding of the atmosphere
    from Low Earth orbit: Preliminary results. B. Am. Meteorol. Soc., 77, 19–40.
    Wickert, J., Michalak, G., Schmidt, T., Beyerle, G., Cheng, C.Z., Healy, S.B., Heise, S.,
    Huang, C.Y., Jakowski, N., K¨ ohler, W., Mayer, C., Offiler, D., Ozawa, E.,
    Pavelyev, A.G., Rothacher, M., Tapley, B., and Arras, C., 2009: GPS radio
    occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr.
    Atmos. Ocean. Sci., 20(1), 35– 50, doi:10.3319/TAO.2007.12.26.01(F3C).
    Wickert, J., Reigber, C., Beyerle, G., K¨ onig. R., Marquardt, C., Schmidt, T., Grunwaldt,
    L., Galas, R., Meehan, T.K., Melbourne, W.G., and Hocke, K., 2001: Atmosphere
    sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett.,
    28, 3263–3266.
    Wickert, J., Schmidt, T., Beyerle, G., K¨ onig. R., Reigber, C., and Jakowski, N., 2004:
    The radio occultation experiment aboard CHAMP: Operational data processing and
    validation of atmospheric parameters. J. Meteorol. Soc. Jpn., 82, 381–395.
    Wu, C.-C., K.-H. Chou, Y. Wang, and Y.-H Kuo, 2006: Tropical cyclone initialization
    and prediction based on four-dimensional variational data assimilation. J. Atmos.
    Sci., 63, 2383-2395.
    70
    Wu, C-C., K.-H. Chou, P.-H. lin, S. D.Aberson, M. S.Peng, T. Nakazawa, 2007: The
    impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea.
    Forecasting, 22, 1157–1176.
    Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling
    hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128,
    2252-2269.
    Yang, S.-C., S.-Y. Chen, S.-H. Chen, C.-Y. Huang, and C.-S. Chen, 2013: Evaluating the
    impact of the COSMIC RO bending angle data on predicting the heavy
    precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., in
    revision.
    Yeh, H.-C., and Y.-L. Chen, 1998: Characteristics of the rainfall distribution over Taiwan
    during TAMEX. J. Appl. Meteor., 37, 1457–1469.
    Yeh, H.-C., and Y.-L. Chen, 2002: The role of offshore convergence on coastal rainfall
    during TAMEX IOP3. Mon. Wea. Rev., 130, 2709– 2730.
    Yunck, T. P, Liu, C.-H., and Ware, R, 2000: A history of GPS sounding. Terr. Atmos.
    Ocean. Sci., 11,1–20.
    Yunck, T.P. 2002: An over view of atmospheric radio occultation. J. Global Position.
    Syst., 1, 58–60, doi:10.5081/jgps.1.1.58.
    Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature
    hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci., 57,
    836-860.
    71
    Zou, X., B. Wang, H. Liu, R. A. Anthes, T. Matsumura, and Y. J. Zhu, 2000: Use of
    GPS/MET refraction angles in 3D variational analysis. Quart. J. Roy. Meteor . Soc.,
    126, 3013-3040.
    Zou, X., F. Vandenberghe, B. Wang, M. E. Gorbunov, Y.-H. Kuo, S. Sokolovskiy, J. C.
    Chang, J. G. Sela, and R. Anthes, 1999: A raytracing operator and its adjoint for the
    use of GPS/MET refraction angle measurements. J. Geophys. Res., 104, 22301-
    22318.

    QR CODE
    :::