跳到主要內容

簡易檢索 / 詳目顯示

研究生: 申自強
Tzu-Chiang Shen
論文名稱: Speech Recognition via Attention Mechanism on Raspberry Pi
指導教授: 孫敏德
Min-Te (Peter) Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系在職專班
Executive Master of Computer Science & Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 52
中文關鍵詞: 語音識別注意力機制樹梅派孤立詞喚醒詞
外文關鍵詞: Speech Recognition, Attention Mechanism, Raspberry Pi, Isolated Word, Wake-Up-Word
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 語音識別作為一種新的計算機界面形式。它啟用了語音助手(例如Alexa 和Siri),這可以幫助我們獲得許多服務,例如獲取日常信息和設置駕駛導航系統。自1990 年代初以來,語音識別已得到廣泛研究。然而,隨著越來越多的便攜式嵌入式設備(如導航系統、語言翻譯器等)出現在市場上,需要基於低計算設備的離線語音識別。在這項研究中,我們專注於將編碼器-解碼器神經網絡應用於Raspberry Pi 等低功耗設備。與需要將錄製的語音傳輸到昂貴的服務器以提供計算和推理的Alexa 和Siri 相比,我們構建了一個僅在本地推斷語音樣本的語音識別模型。我們的模型使用CNN 作為編碼器,使用具有註意力機制的LSTM 或GRU 作為解碼器。此外,採用Tensorflow Lite 將模型導入Raspberry Pi 進行語音推理。實驗結果表明,在Raspberry Pi 上使用注意力機制後,模型對孤立詞的識別能力在召回率上提高了約2% 到5%。由於低功耗設備的計算能力有限,Raspberry Pi 上的推理時間非常長。


    Speech recognition serves as a new form of computer interface. It enables the voice assistant (e.g., Alexa and Siri), which helps us on many services like obtaining daily information and setting up driving navigation system. Speech recognition has been extensively studied since the early 1990s. However, as more and more portable embedded devices
    (e.g., navigation system, language translator, etc.) appear on the market, there is a need for offline speech recognition based on low computation device. In this research, we focus on applying an Encoder-Decoder neural network to a low-power device like the Raspberry Pi. In contrast to Alexa and Siri that require the transmission of recorded voice to expensive servers to provide computation and inference, we build a speech recognition model that just infers speech samples locally. Our model uses CNN as the encoder and LSTM or GRU with attention mechanism as the decoder. In addition, Tensorflow Lite is adopted to import the model to the Raspberry Pi for speech inference. The experimental results indicate that the model’s ability to recognize isolated words was improved about 2% to 5% in recall by using the attention mechanism on Raspberry Pi. Inference times on the Raspberry Pi are so long due to the limited computing power of the low-power device.

    Contents 1 Introduction 1 2 Related Work 2 2.1 Statistics-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Deep learning-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Preliminary 5 3.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Design 15 4.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 Overview of Sound Features . . . . . . . . . . . . . . . . . . . . . . 17 4.2.2 Time-Frequency-Domain Analysis . . . . . . . . . . . . . . . . . . . 18 4.2.3 Outliers Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Encoder Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.1 CNN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 LSTM module with attention mechanism . . . . . . . . . . . . . . . 22 4.4 Decoder Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.5 Low-Power Inference on Raspberry Pi . . . . . . . . . . . . . . . . . . . . . 24 5 Performance 25 5.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2 Experimental environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Conclusions 45 Reference 46

    1976. Academic Press Rapid Manuscript Reproduction.
    Academic Press, 1976. isbn: 9780121709501. url: https://books.google.com.
    tw/books?id=wW9QAAAAMAAJ.
    [2] Ching Y. Suen. “n-Gram Statistics for Natural Language Understanding and Text
    Processing”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
    PAMI-1.2 (1979), pp. 164–172. doi: 10.1109/TPAMI.1979.4766902.
    [3] S. Davis and P. Mermelstein. “Comparison of parametric representations for monosyllabic
    word recognition in continuously spoken sentences”. In: IEEE Transactions
    on Acoustics, Speech, and Signal Processing 28.4 (1980), pp. 357–366. doi:
    10.1109/TASSP.1980.1163420.
    [4] Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. “A Maximum Likelihood
    Approach to Continuous Speech Recognition”. In: IEEE Transactions on Pattern
    Analysis and Machine Intelligence PAMI-5.2 (1983), pp. 179–190. doi: 10.1109/
    TPAMI.1983.4767370.
    [5] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
    representations by error propagation. Tech. rep. California Univ San Diego La Jolla
    Inst for Cognitive Science, 1985.
    [6] L.R. Rabiner. “A tutorial on hidden Markov models and selected applications in
    speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286. doi:
    10.1109/5.18626.
    Communication 9.1 (1990). Neurospeech,
    pp. 83–92. issn: 0167-6393. doi: https://doi.org/10.1016/0167- 6393(90)
    90049-F.
    [9] Lawrence Rabiner and Biing-Hwang Juang. Fundamentals of speech recognition.
    Prentice-Hall, Inc., 1993.
    [10] Jianxiong Wu and Chorkin Chan. “Isolated word recognition by neural network
    models with cross-correlation coefficients for speech dynamics”. In: IEEE Transactions
    on Pattern Analysis and Machine Intelligence 15.11 (1993), pp. 1174–1185.
    doi: 10.1109/34.244678.
    [11] D.A. Reynolds and R.C. Rose. “Robust text-independent speaker identification using
    Gaussian mixture speaker models”. In: IEEE Transactions on Speech and Audio
    Processing 3.1 (1995), pp. 72–83. doi: 10.1109/89.365379.
    [12] Hervé Bourlard et al. “A new training algorithm for hybrid HMM/ANN speech
    recognition systems”. In: 1996 8th European Signal Processing Conference (EUSIPCO
    1996). 1996, pp. 1–4.
    [13] R.Klevansand R.Rodman. “Voice Recognition”. In: Artech House, Boston. London,
    1997.
    [22] Anssi Klapuri and Manuel Davy. Signal Processing Methods for Music Transcription.
    Jan. 2006. isbn: 978-0-387-30667-4. doi: 10.1007/0-387-32845-9.
    [23] Silk Smita, Sharmila Biswas, and Sandeep Solanki. “Audio Signal Separation and
    Classification: A Review Paper”. In: 3297 (Dec. 2007).
    [24] Hanwu Sun, Bin Ma, and Haizhou Li. “An Efficient Feature Selection Method for
    Speaker Recognition”. In: 2008 6th International Symposium on Chinese Spoken
    Language Processing. 2008, pp. 1–4. doi: 10.1109/CHINSL.2008.ECP.57.
    [25] “Baum-Welch Algorithm”. In: Encyclopedia of Biometrics. Ed. by Stan Z. Li and
    Anil Jain. Boston, MA: Springer US, 2009, pp. 60–61. isbn: 978-0-387-73003-5. doi:
    10.1007/978-0-387-73003-5_539. url: https://doi.org/10.1007/978-0-
    387-73003-5_539.
    [26] Anup Kumar Paul, Dipankar Das, and Md. Mustafa Kamal. “Bangla Speech Recognition
    System Using LPC and ANN”. In: 2009 Seventh International Conference on
    Advances in Pattern Recognition. 2009, pp. 171–174. doi: 10.1109/ICAPR.2009.80.
    [27] Zhiyong Yan and Congfu Xu. “Studies on classification models using decision boundaries”.
    In: 2009 8th IEEE International Conference on Cognitive Informatics. 2009,
    pp. 287–294. doi: 10.1109/COGINF.2009.5250724.
    [28] Geoffrey Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech
    Recognition: The Shared Views of Four Research Groups”. In: Signal Processing
    Magazine, IEEE 29 (Nov. 2012), pp. 82–97. doi: 10.1109/MSP.2012.2205597.
    49
    [29] L.-H Chen et al. “Joint spectral distribution modeling using restricted boltzmann
    machines for voice conversion”. In: Proceedings of the Annual Conference of the
    International Speech Communication Association, INTERSPEECH (Jan. 2013),
    pp. 3052–3056.
    [30] Xugang Lu et al. “Speech enhancement based on deep denoising Auto-Encoder”. In:
    Proc. Interspeech (Jan. 2013), pp. 436–440.
    [31] Bingyin Xia and Chang-chun Bao. “Speech enhancement with weighted denoising
    auto-encoder”. In: INTERSPEECH. 2013.
    [32] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation
    by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473
    (2014).
    [33] Jan Chorowski et al. “End-to-end continuous speech recognition using attentionbased
    recurrent NN: First results”. In: arXiv preprint arXiv:1412.1602 (2014).
    [34] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning
    with Neural Networks”. In: Proc. NIPS. Montreal, CA, 2014. url: http://arxiv.
    org/abs/1409.3215.
    [35] Zhen-Hua Ling et al. “Deep Learning for Acoustic Modeling in Parametric Speech
    Generation: A systematic review of existing techniques and future trends”. In: IEEE
    Signal Processing Magazine 32.3 (2015), pp. 35–52. doi: 10 . 1109 / MSP . 2014 .
    2359987.
    [36] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches
    to Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference
    on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
    50
    Association for Computational Linguistics, Sept. 2015, pp. 1412–1421. doi: 10 .
    18653/v1/D15-1166. url: https://aclanthology.org/D15-1166.
    [37] Shipra Gupta. “Application of MFCC in Text Independent Speaker Recognition”.
    In: 2016.
    [38] Rohit J Kate. “Using dynamic time warping distances as features for improved
    time series classification”. In: Data Mining and Knowledge Discovery 30.2 (2016),
    pp. 283–312.
    [39] Aaron van den Oord et al. WaveNet: A Generative Model for Raw Audio. 2016. doi:
    10.48550/ARXIV.1609.03499. url: https://arxiv.org/abs/1609.03499.
    [40] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap
    between Human and Machine Translation. 2016. doi: 10 . 48550 / ARXIV . 1609 .
    08144. url: https://arxiv.org/abs/1609.08144.
    [41] Ashish Vaswani et al. Attention Is All You Need. 2017. doi: 10.48550/ARXIV.
    1706.03762. url: https://arxiv.org/abs/1706.03762.
    [42] Rajiv Barman et al. “Content Capture and Noise Cancellation Aided Mood Recognition
    using Assamese Speech”. In: 2018 5th International Conference on Signal
    Processing and Integrated Networks (SPIN). 2018, pp. 811–815. doi: 10 . 1109 /
    SPIN.2018.8474243.
    [43] Saswati Debnath and Pinki Roy. “Speaker Independent Isolated Word Recognition
    based on ANOVA and IFS”. In: Jan. 2018, pp. 92–97. doi: 10.1145/3177457.
    3191708.
    51
    [44] Warren He, Bo Li, and Dawn Song. “Decision Boundary Analysis of Adversarial
    Examples”. In: International Conference on Learning Representations. 2018. url:
    https://openreview.net/forum?id=BkpiPMbA-.
    [45] P. Warden. “Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition”.
    In: ArXiv e-prints (Apr. 2018). arXiv: 1804.03209 [cs.CL]. url: https:
    //arxiv.org/abs/1804.03209.
    [46] Ekaba Bisong. “Google Colaboratory”. In: Building Machine Learning and Deep
    Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners.
    Berkeley, CA: Apress, 2019, pp. 59–64. isbn: 978-1-4842-4470-8. doi: 10.1007/978-
    1-4842-4470-8_7. url: https://doi.org/10.1007/978-1-4842-4470-8_7.

    QR CODE
    :::