跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鍾傳廣
Chuan-Kuang Chung
論文名稱: 以軟體定義無線電平台設計與實現 CCSDS太空衛星遙測傳收機
Design and Implementation of CCSDS Telemetry Transceiver with SDR Platform
指導教授: 陳逸民
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 67
中文關鍵詞: 太空資訊系統諮詢委員會太空遙測數位訊號處理器訊框同步Berlekamp轉換矩陣演算法軟體定義無線電低軌道衛星FPGA
外文關鍵詞: CCSDS, Telemetry, Digital Signal Processor, Frame Synchronizer, Berlekamp Transformation matrix Algorithm, Software Defined Radio, FPGA, Low Earth Orbit Satellite
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著數位衛星通訊技術的快速發展,低軌道衛星通訊領域成為熱門的研究課題與技術發展方向,提供大量資料傳輸及全球通訊覆蓋的能力。太空資訊系統諮詢委員會 (Consultative Committee for Space Data Systems) 所制定之通訊標準明確給出太空任務間的數據交換和通信。其標準涵蓋了太空任務中之數據格式、通訊協定、錯誤檢測和修正等方面,為太空任務的成功執行提供了重要支持。基於本標準下實現之通訊傳輸能穩定進行資料數據交換,並以 FPGA 開發板實現,以適應不同傳輸環境的應用。
    在本論文中,我們設計傳收機硬體架構並以 Verilog 硬體描述語言實踐,傳收機規格參考 CCSDS 所制定之 Telemetry 通訊標準,參考 DVB-T 架構之通道編解碼規格進行改良以及擴充。以上述規格開發出傳收穩定之收發機系統,且在 Zedboard 與 AD9361 平台使用天線進行收發。在資料控制上利用 PYNQ 實現軟體定義無線電平台與電腦間的資料傳輸。


    With the rapid development of digital satellite communication technology, Low Earth Orbit Satellite (LEO) communication has become a popular research topic and technological development direction, offering extensive data transmission and global communication coverage capabilities. The Consultative Committee for Space Data Systems (CCSDS) has established communication standards that specifically address data exchange and communication among space missions. These standards encompass data formats, communication protocols, error detection and correction, providing crucial support for the successful execution of space missions. This research presents a comprehensive hardware and software solution for satellite communication, aligning with established standards and leveraging FPGA technology for efficient and reliable data exchange in space missions.
    In this paper, we design a transceiver hardware architecture implemented in Verilog Hardware Description Language (HDL). The transceiver specifications are based on the communication standards set by the Consultative Committee for Space Data Systems (CCSDS) and enhanced with the channel encoding and decoding specifications of the DVB-T framework.. The developed transceiver module ensures stable data exchange using communication transmission based on the aforementioned specifications, implemented on the Zedboard & AD9361 platform with antennas for transmission and reception. Data control is achieved through PYNQ to enable data transmission between the Software Defined Radio platform and computer.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 研究動機和背景 1 論文架構與章節簡介 2 第二章 CCSDS Telemetry傳收機系統 3 2-1 通道編碼子層架構 5 2-2 通道解碼子層架構 7 2-3 通道編碼器 8 2-3-1 Reed-Solomon Code Encoder 8 2-3-2 Berlekamp algorithm Transfer Matrix 10 2-3-3 Pseudo-Randomizer 12 2-3-4 Convolutional Code Encoder 13 2-4 Attached Synchronization Marker 14 2-5 星座圖映射器 15 2-6 脈衝整型濾波器 16 2-7 Frame Synchronization解訊框同步 18 第三章 CCSDS Telemetry傳收機硬體實現 19 3-1 Reed-Solomon code Encoder 21 3-2 Berlekamp algorithm Transfer Matrix 22 3-3 Pseudo Randomizer 23 3-4 Attached Synchronization Marker 24 3-5 Convolutional Code Encoder 26 3-6 星座圖映射器 27 3-7 脈衝整型濾波器 28 3-8 Frame Synchronization 29 3-9 Rx Buffer Engine 31 第四章 軟體定義無線電平台之實現 34 4-1 軟體定義無線電 34 4-2 軟體定義無線電平台 34 4-3 FPGA ( ZedBoard ) 36 4-4 RF Module ( AD9361 ) 38 4-5 PYNQ軟體開發環境 39 4-6 AXI4-Stream 40 4-7 實驗與驗證 42 4-7-1 硬體資源使用率 43 4-7-2 硬體時序報告 44 4-7-3 發射機驗證 45 4-7-4 傳收機硬體實現及驗證 47 4-7-5 傳收機硬體實現結果 48 第五章 結論與展望 50 參考文獻 51

    [1] Tzu-Chun Liu. “Implementation of High Throughput Codec for Wideband OFDM Transceiver with SDR Platform” National Central University, Master's thesis, Dec. 2019.
    [2] Guan-Ciou Huang. “Implementation of Wideband OFDM mmWave Transceiver with RFSoC Platform” National Central University, Master’s thesis, Oct, 2020.
    [3] C.H. Kuo. “Design and Implementation of Viterbi Decoder for Multi-Rate Convolutional Code in DVB-T System” National Central University, Master’s thesis, Jul. 2010.
    [4] Y.-M. Chen, “A simple carrier synchronization for dvb-s2 signals using polar decision-directed phase error estimator.” 2014.
    [5] Jae-Sun Han, Tae-Jin Kim, Chanho Lee. “High performance Viterbi decoder using modified register exchange methods” in 2004 IEEE International Symposium on Circuits and Systems, Vol.3, Page(s): III – 553-6, May 2004.
    [6] D. A. F. Ei-Dib and M. I. Elmasry. “Low-power register-exchange Viterbi decoder for high-speed wireless communications” IEEE ISCAS, Vol. 5, pp. V737~740, May. 2002.
    [7] Feygin, G.; Gulak, P. “Architectural tradeoffs for survivor sequence memory management in Viterbi decoder” Communications, IEEE Trans. On Communications, Vol 41, Issue 3, Page(s):425~429, March 1993.
    [8] T. K. Truong, M. –T. Shih, I. S. Reed, and E. H. Satorius. “A VLSI design for a trace-back Viterbi decoder” IEEE Trans. on Communications, Vol. 40, No.3, pp.616~624, Mar. 1992.
    [9] Ivan M. Onyszchuk. “Truncational Length for Viterbi Decoding” IEEE Trans. On Communication, Vol.COM-39, pp.1023~1026, July 1991.
    [10] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar. “VLSI architectures for metric normalization in the Viterbi algorithm” IEEE ICC, Vol. 4, pp.1723-1728, Apr. 1990.
    [11] H. G. Myung, J. Lim, and D. J. Goodman. “Peak-to-average power ratio of single carrier fdma signals with pulse shaping” in Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on, pp. 1-5, 2006.
    [12] K. Sobaihi, A. Hammoudeh, D. Scammell. “Automatic Gain Control on FPGA for Software-Defined Radios” in London, UK, 2012 Wireless Telecommunications Symposium, IEEE Aug. 2012.
    [13] CCSDS, “131.0-B-1 TM Synchronization and Channel Coding.” April 2022.
    [14] CCSDS, “132.0-B-1 TM Space Data Link Protocol.” October 2021.
    [15] CCSDS, “133.0-B-1 Space Packet Protocol. September 2003.
    [16] CCSDS, “401.0-B-31 Radio Frequency and Modulation Data System Standards.” Feb. 2021.
    [17] Crockett, Louise H., et al., “The Zynq book: embedded processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 all programmable SoC.,” Strathclyde Academic Media, 2014.
    [18] Boettcher, M. A., B. M. Butt, and S. Klinkner., “Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications.” IOP Conference Series: Materials Science and Engineering. Vol. 152. No. 1. IOP Publishing, 2016.
    [19] Budroweit, Jan, T. Gärtner, and Fabian Greif., “Design of a fully-integrated telemetry and telecommand unit for CCSDS spacecraft communication on a generic software-defined radio platform.” 2020 IEEE Space Hardware and Radio Conference (SHaRC). IEEE, 2020.
    [20] Yu-Chieh Lin. "Implementation of Multi-mode Wideband OFDM mmWave Transceiver and Application with RFSoC Platform", National Central University, 2021.
    [21] Chih-Yi LEE. "Design and Implementation of an OFDM MIMO Transceiver with SDR Platform”, National Central University, 2022.
    [22] Dimple Garg, C. P. Sharma, Pratap Chaurasia, Arup Roy Chowdhury, "High throughput FPGA implementation of Reed-Solomon Encoder for Space Data Systems", 2013 Nirma University International Conference on Engineering (NUiCONE), 2013.
    [23] Maj a Malenko, ''Implementation of Reed-Solomon RS(255,239)Code" Proc, of
    the 2nd International Conference on Applied Innovations in IT (ICAIIT), March
    2014.
    [24] T. K. Truong, L. J. Deutsch, I. S. Reed, I. S. Hsu, K. Wang & C. S. Yeh. "The VLSI Design of a Reed-Solomon Encoder Using Berlekamp’s Bit-Serial Multiplier Algorithm” Third Caltech Conference on Very Large Scale Integration, NASA, 1983.
    [25] Marvin Perlman, Jun-Ji Lee. "Reed-Solomon Encoders - Conventional vs Berlekamp's Architecture" NASA, Dec 1982.
    [27] AXI Streaming FIFO. Retrieved from https://www.xilinx.com/products/intellectual-property/axi_fifo.html#documentation
    [28] Arm Developer. AMBA 4 AXI4-Stream Protocol Specification. Retrieved from https://developer.arm.com/documentation/ihi0051/a?lang=en
    [29] Xilinx. PYNQ:PYTHON PRODUCTIVITY. Rertieved from
    http://www.pynq.io/
    [30] Zynq 7000 SoCs. Retrieved from https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html#tabs-bea253336e-item-8b95c927d1-tab

    QR CODE
    :::