跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃御珉
Yu-Min Huang
論文名稱: 探討氣體反壓控制技術下奈米碳管複合材料於超臨界微細發泡射出成型之泡體結構研究
Study of Foaming Morphology in Microcellular Injection Molded MWCNT Composites under Gas Counter Pressure
指導教授: 鍾禎元
Chen-Yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 140
中文關鍵詞: 超臨界微細發泡射出成型氣體反壓控制技術奈米碳管
外文關鍵詞: Microcellular Injection Molding, Gas Counter Pressure, Carbon nanotube
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發泡射出成型製程中泡體尺寸、密度及分布的控制是非常複雜,特別是在高減重比情況下更容易出現泡體尺寸分布不均及泡體破裂等缺陷,這些缺陷進而影響到產品之機械性能。
    本研究利用奈米碳管添加至兩種不同材料分別為熱塑性聚氨酯(TPU)及聚丙烯(PP),再使用氣體反壓技術(Gas Counter Pressure, GCP)改善泡體結構。透過SEM截面圖、泡體直徑、泡體密度、泡體尺寸分布探討奈米碳管含量、SCF含量、反壓壓力及持壓時間對於泡體結構變化之影響。研究結果表示兩種材料均在添加奈米碳管後平均泡體尺寸下降,TPU之平均泡體直徑約下降12μm,大於100μm之泡體占比由8.18%降低至3.64%,PP之平均泡體直徑約下降60μm,大於100μm之泡體占比由42.6%降低至22.33%,而在使用氣體反壓技術後,TPU平均泡體尺寸降低至32μm,且有50%以上之20~40m泡體,PP之平均泡體直徑降低至約67μm,大於100μm泡體占比降低至約15%,達成均勻度之改善。


    Foaming injection molding is very difficult to control of the cell size, foam density and distribution of cells size. And the most frequently occurring defects at high weight-loss ratio are non-uniform cells microstructure and cell collapse. Many of the defects in the structure of cell will affect the mechanical properties of the product.
    In this study, multi-walled carbon nanotubes(MWCNT) were added in two different materials, one is TPU and another is PP. Subsequently, gas counter pressure technology (GCP) is used to change the cell structure. The cell structure is affected by MWCNT content, SCF content, GCP pressure and GCP holding time were investigate by SEM cross-section, cell diameter, foam density and distribution of cell diameter. The result show that the average cell diameter of TPU decreases 12μm, and the ratio of foams with a cell size over than 100μm decreases from 8.18% to 3.64%. The average cell diameter of PP decreases 60μm, and the ratio of foams with a cell size over than 100μm decreases from 42.6% to 22.33%. Furthermore, After using the GCP, the average cell diameter of TPU decreases to 32μm and 50% of cell diameter can be controlled within 20~40μm. The average cell diameter of PP decreases to 67μm, and the ratio of foams with a cell size over than 100μm decreases to 15%. It’s improve the uniformity of manufacturing.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xiv 第1章、 緒論 1 1-1 前言 1 1-2 傳統射出成型 2 1-3 超臨界微細發泡射出成型 3 1-4 氣體反壓控制技術 5 1-5 高分子奈米複合材料 6 1-6 文獻回顧 6 1-6-1 超臨界微細發泡射出成型 6 1-6-2 氣體反壓控制技術(GCP) 8 1-6-3 多壁奈米碳管(multi wall carbon nanotube, MWCNT) 9 1-6-4 文獻總結 9 1-7 動機與目的 10 1-8 本文架構 11 第2章、 基本原理與理論模式 18 2-1 超臨界微細發泡理論 18 2-1-1 超臨界流體 18 2-1-2 超臨界微細發泡之氣泡成長理論 19 2-2 異相成核理論 28 第3章、 實驗設備與研究方法 32 3-1 實驗材料 32 3-1-1 高分子材料 32 3-1-2 物理發泡劑 32 3-1-3 高分子奈米添加劑 33 3-2 實驗設備 33 3-2-1 超臨界微細發泡射出成型機 33 3-2-2 超臨界流體產生器 34 3-2-3 氣體反壓控制設備 34 3-2-4 實驗模具 35 3-2-5 模具溫度控制機 35 3-2-6 除濕乾燥機 35 3-3 量測設備 36 3-3-1 電子天秤 36 3-3-2 溫度感測器 36 3-3-3 掃描式電子顯微鏡 36 3-4 研究方法 37 3-4-1 實驗方法 37 3-4-2 量測方法 37 第4章、 結果與討論 57 4-1 TPU 57 4-1-1 奈米碳管含量對於泡體影響 57 4-1-2 SCF含量對於泡體影響 59 4-1-3 反壓壓力對於泡體影響 60 4-1-4 持壓時間對於泡體影響 62 4-2 PP 63 4-2-1 奈米碳管含量對於泡體影響 63 4-2-2 SCF對於泡體影響 65 4-2-3 不同反壓壓力對於泡體影響 66 4-2-4 不同持壓時間對於泡體影響 67 第5章、 結論與未來展望 113 5-1 結論 113 5-2 未來展望 114 參考文獻 116

    [1] C. Park and N. Suh, "Extrusion of microcellular polymers using a rapid pressure drop device," Society of Plastic Engineers Technical Papers, vol. 39, pp. 1818-1822, 1993.
    [2] S.-T. Lee and C. B. Park, Foam extrusion: principles and practice. CRC press, 2014.
    [3] 李冠樺, "氣體反壓與動態模具溫控技術應用於熱塑性彈性體高減重比之超臨界微細發泡射出成型泡體均勻性之研究," 中原大學機械工程研究所學位論文, pp. 1-191, 2017.
    [4] V. Shaayegan, L. H. Mark, C. B. Park, and G. Wang, "Identification of cell‐nucleation mechanism in foam injection molding with gas‐counter pressure via mold visualization," AIChE Journal, vol. 62, no. 11, pp. 4035-4046, 2016.
    [5] 黃松煒, "氣體反壓對於射出成型流場特性/分子排向以及成型品品質影響之初步評估," 中原大學機械工程研究所學位論文, pp. 1-123, 2012.
    [6] C. Wang, K. Cox, and G. A. Campbell, "Microcellular foaming of polypropylene containing low glass transition rubber particles in an injection molding process," Journal of Vinyl Additive Technology.vol. 2, no. 2, pp. 167-169, 1996.
    [7] M. Lee, C. B. Park, and C. Tzoganakis, "Measurements and modeling of PS/supercritical CO2 solution viscosities," Polymer Engineering Science.vol. 39, no. 1, pp. 99-109, 1999.
    [8] J. W. Lee, C. B. Park, and S. G. Kim, "Reducing material costs with microcellular/fine-celled foaming," Journal of cellular plastics
    vol. 43, no. 4-5, pp. 297-312, 2007.
    [9] D. I. Collias, D. G. Baird, and R. J. Borggreve, "Impact toughening of polycarbonate by microcellular foaming," Polymer, vol. 35, no. 18, pp. 3978-3983, 1994.
    [10] J. R. Royer, Y. J. Gay, J. M. Desimone, and S. A. Khan, "High‐pressure rheology of polystyrene melts plasticized with CO2: Experimental measurement and predictive scaling relationships," Polymer Science Part B: Polymer Physics, vol. 38, no. 23, pp. 3168-3180, 2000.
    [11] N. Ramesh, D. H. Rasmussen, and G. A. Campbell, "Numerical and experimental studies of bubble growth during the microcellular foaming process," Polymer Engineering Science, vol. 31, no. 23, pp. 1657-1664, 1991.
    [12] T. Ishikawa, K. Taki, and M. Ohshima, "Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core‐back foam injection molding," Polymer Engineering Science.vol. 52, no. 4, pp. 875-883, 2012.
    [13] A. K. Bledzki, H. Kirschling, G. Steinbichler, and P. Egger, "Polycarbonate microfoams with a smooth surface and higher notched impact strength," Journal of cellular plastics, vol. 40, no. 6, pp. 489-496, 2004.
    [14] S. Chen, P. Hsu, and Y. Lin, "Establishment of gas counter pressure technology and its application to improve the surface quality of microcellular injection molded parts," J International polymer processing, vol. 26, no. 3, pp. 275-282, 2011.
    [15] 許評順, "模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究," 博士, 機械工程研究所, 中原大學, 桃園縣, 2011.
    [16] 蕭宇倫, "模內氣體反壓與動態模溫協同控制系統應用於超臨界微細發泡射出成型發泡控制及產品機械性質之研究," 碩士, 機械工程研究所, 中原大學, 桃園縣, 2011.
    [17] J. W. Lee, R. E. Lee, J. Wang, P. U. Jung, and C. B. Park, "Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles," Chemical Engineering Science, vol. 167, pp. 105-119, 2017.
    [18] S.-C. Chen, M.-H. Chung, Y.-W. Lin, P.-S. Hsu, S.-S. Hwang, and P.-m. Hsu, "Rheological characterization of polystyrene melts dissolved with supercritical nitrogen fluid during microcellular injection moulding," e-Polymers, vol. 10, no. 1, 2010.
    [19] D.-R. Yu and G.-H. Kim, "Effects of multi-walled carbon nanotube (MWCNT) content on physical properties and cell structure in ethylene vinyl acetate copolymer (EVA)/MWCNT nanocomposite foams," Polymer-Plastics Technology Engineering, vol. 52, no. 7, pp. 699-703, 2013.
    [20] J. Shen, C. Zeng, and L. J. Lee, "Synthesis of polystyrene–carbon nanofibers nanocomposite foams," Polymer, vol. 46, no. 14, pp. 5218-5224, 2005.
    [21] L. Chen, K. Blizard, R. Straff, and X. Wang, "Effect of filler size on cell nucleation during foaming process," Journal of cellular plastics, vol. 38, no. 2, pp. 139-148, 2002.
    [22] 黃大剛, "探討熱塑性聚氨酯/多壁奈米碳管複合材料於高減重比下之泡體均勻度於超臨界微細發泡射出成型之研究," 碩士, 機械工程研究所, 中原大學, 桃園縣, 2019.
    [23] 蕭翰薪, "聚丙烯結合碳纖維複合材料超臨界微細發泡射出成型之纖維配向對成型品導電度與拉伸強度之影響," 碩士, 機械工程研究所, 中原大學, 桃園縣, 2018.
    [24] C. B. Park and N. P. Suh, "Filamentary extrusion of microcellular polymers using a rapid decompressive element," Polymer Engineering Science.vol. 36, no. 1, pp. 34-48, 1996.
    [25] M. Amon and C. D. Denson, "A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles," Polymer Engineering Science.vol. 24, no. 13, pp. 1026-1034, 1984.
    [26] N. H. Fletcher, "Van der Waals' equation and nucleation theory," European journal of physics, vol. 14, no. 1, p. 29, 1993.
    [27] C. Villamizar and C. D. Han, "Studies on structural foam processing II. Bubble dynamics in foam injection molding," Polymer Engineering Science.vol. 18, no. 9, pp. 699-710, 1978.
    [28] R. J. Koopmans, J. C. den Doelder, and A. N. Paquet, "Modeling foam growth in thermoplastics," Advanced Materials, vol. 12, no. 23, pp. 1873-1880, 2000.
    [29] C. D. Han and H. J. Yoo, "Studies on structural foam processing. IV. Bubble growth during mold filling," Polymer Engineering Science, vol. 21, no. 9, pp. 518-533, 1981.
    [30] X. Liu, "Heterogeneous nucleation or homogeneous nucleation?," The Journal of Chemical Physics, vol. 112, no. 22, pp. 9949-9955, 2000.
    [31] D. Turnbull, "Kinetics of heterogeneous nucleation," The Journal of Chemical Physics, vol. 18, no. 2, pp. 198-203, 1950.
    [32] K. Taki, "Experimental and numerical studies on the effects of pressure release rate on number density of bubbles and bubble growth in a polymeric foaming process," Chemical Engineering Science, vol. 63, no. 14, pp. 3643-3653, 2008.
    [33] C. Villamizar and C. D. Han, "Studies on structural foam processing II. Bubble dynamics in foam injection molding," J Polymer Engineering Science, vol. 18, no. 9, pp. 699-710, 1978.

    QR CODE
    :::