| 研究生: |
張維敉 Wee-Bee Teo |
|---|---|
| 論文名稱: |
金融危機與風險外溢─DCC模型之應用 Financial Crisis and Risk Spillover: An Application of The DCC Model |
| 指導教授: |
周冠男
Robin Chou 徐之強 Chih-Chiang Hsu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | DCC模型 、風險外溢 、風險值 、金融危機 |
| 外文關鍵詞: | DCC model, Risk Spillover, Financial Crisis, Value at Risk |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇研究主要利用Engle(2001)提出之DCC-多變量GARCH模型探討亞洲金融危機時期,亞洲國家,包括印尼、日本、馬來西亞、菲律賓、韓國、台灣與泰國等匯率市場和股票市場彼此間的動態條件相關性。
亞洲金融危機於1997年7月泰銖大貶而掀開序幕,其影響快速的蔓延至東南亞各國。雖然傳遞至各國的速度與各國受影響的程度皆不一樣,但是最終影響了全球的經濟以及造成一些新興國家的經濟嚴重衰退。因此,亞洲金融危機使得經濟學者對各金融市場間的關係的評估不在只是著重在國際面,而也開始著重在一個國家裡各個市場的相關性。然而,針對過去一些金融危機(financial crisis)的研究多數著重在報酬率(一階動差)的探討,如匯市報酬率和股市報酬率之間的相關性,較少研究波動性(二階動差)的變化與影響。然而,在財務理論上,不論在資產評價或動態避險等,波動性扮演著很重要的角色。隨著時間的不同,各市場間的波動變化皆不一樣,進而影響市場間波動之相關性也隨著時間之不同而不同。因此,採用固定相關係數來衡量不同市場彼此間的影響似乎易造成高估或低估彼此間的相關性,尤其在波動性發生劇烈變化之時,進而影響避險效果或風險值(Value at Risk,VaR)之計算。
本論文之研究結果主要發現市場之間有資訊或波動外溢之現象。波動性之蔓延,使市場彼此間變異與波動相關性皆受到影響,尤其在亞洲金融風暴期間,市場間之波動相關性皆發生明顯正相關之變化。此外,隨著投資種類與投資市場的多樣化及規避風險重要性之提高,採用固定相關係數來衡量市場間之相關性與投資組合之風險值計算,會造成高估或低估的情況,尤其在市場波動劇烈變動時期。
Financial Crisis and Risk Spillover: An Application of the DCC Model
In this paper, we apply the Dynamic Conditional Correlation Multivariate GARCH (DCC MV-GARCH) model, proposed by Engle (2001), to investigate the effects of risk-spillover between currency and equity markets during the Asian crisis. We consider seven Asian countries including ndonesia, Japan, Malaysia, Philippines, South Korea, Taiwan, and Thailand.
The Asian crisis began in July 1997 with the devaluation of the Thai baht and it spread out quickly through East Asia. Although each country experienced the crisis with differing intensity and duration, eventually the global economy is affected by this crisis and causing several emerging countries experience deep recessions.
Many economists have evaluted the relationships among international financial markets and also the intermarket dependencies within each country since the Asian crisis. Studies of Asian crisis mostly focus on the first moment (return), however, volatility (the second moment) plays a key role in many areas of finance, especially in asset pricing and dynamic hedging strategies. For example, volatility and the dynamic correlation among markets play a central role as the selection of investment assets and markets and the importance of dynamic hedging are increasing. The hypothesis of a constant correlation of volatility among markets is likely to be incorrect because the correlation will likely to be more volatile as market volatility fluctuates. Thus, there would be bias if we simply use constant correlation to measure the correlation between markets. Especially when the market volatility is unstable, it would also affect the dynamic hedging effect and the calculation of VaR (Value at Risk).
Our results show that there are volatility spillovers among markets. The dynamic correlations among markets are positively related during the Asian crisis. We find that the assumption of a constant correlation would introduce biases in the calculation of correlation among markets and in the estimation of VaR.
一、中文部份:
1. 曾炎城(1999),金融危機期間貶值預期對股市報酬與波動的衝擊,逄甲大學經濟學研究所碩士論文。
2. 黃柏仁(1999),股市報酬、貨幣貶值與傳遞效果,逄甲大學經濟學研究所碩士論文。
3. 林俊安(1999),亞洲風暴中亞太國家匯率變動率對股市波及效果之網狀GARCH研究,台灣大學財務金融研究所碩士論文。
4. 邱永和(2000),金融風暴前後亞洲各國股匯市波動性之相關研究,東吳大學經濟學研究所碩士論文。
5. 陳木在、陳錦村(2001),商業銀行風險管理,新陸書局。
二、英文部份:
1. Attanasio, O.P. (1991), “Risk, time varying second moments and market efficiency.” Review of Economic Studies, 58, 479-494.
2. Baxter, M., and A. C. Stockman (1989), “ Business Cycles and the Exchange Regime.” Journal of Monetary Economics, 23, 377-400.
3. Black, F. (1976), “Studies in stock price volatility changes.” Proceedings of the 1976 Business Meeting of the Business and Economic Statistics Section, American Statistical Association, 177-181.
4. Bodurtha, J.N., and N.C. Mark (1991), “Testing the CAPM with time varying risks and returns.” Journal of Financial, 46, 1485-1505.
5. Bollerslev, T., R. Engle, and J.M. Wooldridge (1988), “A Capital Asset Pricing Model with Time Varying Covariance.” Journal of Political Economy, 96, 116-131.
6. Bollerslev T., R. Y. Chou, and K. F. Kroner (1992), “ ARCH Modelling in Finance: A Review of the theory and Empirical Evidence.” Journal of Econometrics, 52, 5-59.
7. Bollerslev, T., R. Engle, and D. Nelson (1994), “ARCH Models.” Handbook of Econometrics, IV, 2959-3038.
8. Chou, R.Y.(1988), “Volatility Persistence and Stock Valuations: Some Empirical Evidence Using GARCH.” Journal of Applied Econometrics, 3, 279-294.
9. Christie, A. A. (1982), “The sotckhastic behavior of common stock variances: Value, Leverage and interest rate effects.” Journal of Financial Economics, 10, 407-432.
10. Conolly, R.A. (1989), “An examination of the robustness of the weekend effect.” Journal of Financial and Quantitative Analysis. 24. 133-169.
11. Corsetti, G., P. Pesenti, and N. Roubini (1999), “Paper tigers? A model of the Asian crisis.” European Economic Review, 43, 1211-1236.
12. Diebold, F.X., and P. Pauly (1989), “Small Sample properties of asymptotically equivalent tests for autoregressive conditional heteroskedasticity.” Statisticsbe Hefte, 30, 105-131.
13. Engle, R., T. Ito, and W-L. Lin (1990a), “Meteor showers of heat waves? Heteroskedastic intra daily volatility in the foreign exchange market.” Econometrica, 58, 525-542.
14. Engle, R., T. Ito, and W-L. Lin (1990a), “Where does the meteor shower come form? The role of stochastic policy coordination.” Unpublished manuscript, University of Wisconsin.
15. Engle, R., and K. Kroner (1995), “Multivariate Simultaneous GARCH.” Econometric Theory, 11, 122-150.
16. Engle, R. (2000), “ Dynamic Conditional Correlation-A simple class of multivariate GARCH models.” Department of Economics, University of California, San Diego.
17. Engle, R., and K. Sheppard (2001), “ Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH.” Department of Economics, University of California, San Diego.
18. Fleming, J., C. Kirby, and B. Ostdiek (1998), “ Information and volatility linkages in the stock, bond, and money markets.” Journal of Financial Economics, 49, 111-137.
19. Flood, R.P., and A. K. Rose (1995), “Fixing Exchange Rates-A Virtual Quest for Fundamentals.” Journal of Monetary Economics, 36, 3-37.
20. French, K.R., and R. Roll (1986), “Stock return variances:The arrival of information and the reaction of traders.” Journal of Financial Economics, 17, 5-26.
21. French, K.R., G.W. Schwert, and R.F. Stambaugh (1987), “Expected stock returns and volatility.” Journal of Financial Economics, 19, 3-30.
22. Gallant, A.R., and G. Tauchen (1989), “Semi non-Parametric estimation of conditionally constrained heterogeneous processes: Asset pricing applications.” Econometrica. 57, 1091-1120.
23. Hamao, Y., R Masulis, and V. Ng (1990), “Correlations in price changes and volatility across international stock markets.” Review of Financial Studies, 3, 281-307.
24. Hsieh, D.A (1989a), “Modeling heteroskedasticity in daily foreign exchange rates.” Journal of Business and Economic Statistics, 7, 307-317.
25. Hsieh, D.A (1989b), “Testing for nonlinear dependence in daily foreign exchange rate changes.” Journal of Business, 62, 339-368.
26. Jarrow, R. (1998), “ Volatility: New Estimation Techniques for Pricing Derivatives.” RISK Books.
27. Kallberg, J., C. Liu, and P. Pasquariello (2000), “ The New Asia: regime shifts in currency and equity markets.” Working paper, Stern School of Business, New York University.
28. Karolyi, A., and R. Stulz (1996), “Why do markets move together? An investigation of U.S.-Japan stock return co-movements.” Journal of Finance, 51, 951-986.
29. Krugman, P. (1998), “ What happened to Asia?” Mimeo., MIT, Cambridge, MA.
30. Lin, W-L. (1989), “The sources of intra daily volatility in the foreign exchange market: A multivariate factor GARCH approach.” Unpublished manuscript, University of Wisconsin.
31. Longin, F., and B. Solnik (1995), “ Is the Corelation in International Equity Returns Constant: 1960-1990.” Journal of International Money and Finance, 14, 3-26.
32. Nelson, D.B. (1989), “Modeling stock market volatility changes.” Proceedings of the American Statistical Association, Business and Economic Statistics Section, 93-98.
33. Nelson, D.B. (1990c), “Conditional heteroskedasticity in asset returns: A new approach.” Econometrics, 59, 347-370.
34. Pindyck, R. (1984), “Risk, Inflation and the Stock Market.” American Economic Review, 74, 335-351.
35. Theodossiou, P., and U. Lee (1995), “ Relationship Between Volatility and Expected Returns Across International Stock Markets.” Journal of Business Finance and Accounting, 22, 306-686.
36. Theodossiou, P., E. Kahya, G. Koutmos, and A. Christofi (1997), “ Volatility Reversion and Correlation Structure of Returns in Major International Stock Markets.” The Financial Review, 32.
37. Tsay, R. S. (2002), “ Extreme Values, Quantiles and Value at Risk.” Analysis of Financial Time Series, Chapter 7, John Wiley and SONS, INC.
38. Tse, Y. K. (2000), “ A test for constant correlations in a multivariate GARCH model.” Journal of Econometric, 98, 107-127