跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪嘉良
Jia-liang Hong
論文名稱: 利用線性零組件建構2-D半導體元件模擬及應用
Analysis and Simulation of 2-D Semiconductor Device by Linear Components
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 49
中文關鍵詞: 線性零組件
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們利用基本的線性零組件,來完成非線性元件的模擬,我們使用的基本線性包含零組件電壓源、電容以及電壓控制電流源。我們更進一步將元件內部參數,置於主程式中,便於使用者辨識及做調整。為了用線性零組件進行2-D元件的模擬,我們利用線性電壓控制電流源這個線性零組件,再利用牛頓-拉夫森法將運算得到的電流以及轉導,置入矩陣ADV = B,經由牛頓-拉夫森法可以求解到DV ,這個未知向量,利用此觀念,逐步取代二維模擬器(2D mixed-level simulator)中使用之非線性特殊零組件,在牛頓拉夫森建立公式ADV = B中,A矩陣含微分項,微分項可用解析解或數值解來得到,我們分別運用解析解及數值解完成二維元件模擬,並進行解析解與數值解結果驗證與時間比較。


    In this thesis, the basic linear components, which consist of voltage source, capacitor, and voltage-control current source, are employed to simulate the non-linear devices. The circuit parameters are explicitly defined at the main program for easier recognition and adjustment.To simulate 2-D semiconductor devices by linear elements, the nonlinear Poisson equation and the nonlinear carrier continuity equations are replaced by the linear voltage-controlled current source in the environment of the Newton-Raphson iteration. The matrix A in ADV = B include partial differentiation items which are obtained by both numerical differentiation and analytical differentiation in this thesis. The simulation results show a good accuracy
    between two methods.

    中文摘要..........................................I ABSTRACT .........................................II 目錄..............................................III 圖表索引..........................................IV 第一章簡介........................................1 第二章線性零組件與牛頓-拉夫森法之關係.............3 2.1 線性零組件與牛頓-拉夫森法之運算關係...........3 2.2 線性零組件描述外顯式二極體....................8 2.3 外顯式二極體串聯電阻之暫態響應................11 第三章利用線性零組件完成二維元件模擬..............13 3.1 2D 等效電路模型...............................13 3.2 VCCS 線性零組件與牛頓拉夫森...................17 3.3 以VCCS 線性零組件替換非線性零組件.............19 第四章 2-D半導體元件模擬解析解與數值解比較........23 4.1 線性壓控電流源取代非線性特殊電容..............23 4.2 波松方程式解析模型之推導......................25 4.3 電子漂移擴散解析模型之推導....................27 4.4 電子復合解析模型之推導........................29 4.5 電洞漂移擴散解析模型之推導....................30 4.6 電洞復合解析模型之推導........................32 4.7 結果驗證與時間比較............................34 第五章結論........................................40 參考文獻..........................................41

    [1] S. S. Kuo, “Computer applications of numerical
    methods” Additions-Wesley Pub.Co.1972.
    [2] D. M. Bressoud, “Appendix to A Radical Approcch to
    Real Analysis,” 2nd edition,2006.
    [3] Robert L. Boylestad, Louis Nashelsky, “Electronic
    Devices and Circuit Theory,”Chapter 2,Prentice Hall,
    9 edition, 2005.
    [4] HU Xiao-pen, ZHANG Bo “Dynamic Solution and
    Simulation with the WaveletCollocation Method for
    Differential Equation Series of the Linear Circuits”
    JOURNAL of CIRUITS AND SYSTEMS Vol.9 No.3 June, 2004.
    [5] Donald A Neamen “Semiconductor Physics & Devices”,
    Chapter 8, McGraw-Hill, 2nd edition, 2003.
    [6] M. Shur, “ Introduction to Electronic Devices,”
    Chapter 3, John Wiley & SonsInc.,1996.
    [7] David M. Bressoud, Appendix to Radical Approach to
    Real Analysis 2nd edition,pp.282,2006.
    [8] Gordon E. Moore, “Cramming more components onto
    integrated circuits,” Electronics,Volume 38, Number
    8, April 19, 1965.
    [9] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and
    Vetterling, W. T. "Numerical Derivatives." §5.7 in
    Numerical Recipes in FORTRAN: The Art of Scientific
    Computing, 2nd ed. Cambridge, England: Cambridge
    University Press, pp. 180-184, 1992.
    [10] G. Bianchi, “Performance Analysis of the IEEE 802.11
    Distributed Coordination Function”, IEEE Journal on
    Selected Areas in Communications, vol. 18, no. 3, pp.
    535-547, 2000.

    QR CODE
    :::