跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許瓊芳
Chiung-fang Hsu
論文名稱: SVC視訊串流於IEEE 802.16e網路跨多層QoS最佳化傳輸特性之研究
A Study of QoS Optimized Cross Multi-layer Transmission for SVC Coded Video Stream over IEEE 802.16e Network
指導教授: 吳中實
Jung-shyr Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 可調性視訊編碼服務品質全球微波存取互通介面標準
外文關鍵詞: Scalable Video Coding, QoS, WiMAX
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Scalable Video Coding(SVC)是延伸於H.264/AVC影像編碼技術,不但擁有低位元輸出率、高抗錯性能和網路友善性等優點,還採用分層編碼概念將不同特性的bit-stream送到IP網路上。因為擁有網路友善性機制,使之非常適合應用在異質網路。另外,SVC提供三種可調性:空間、時間與訊噪比可調性,因此可以根據網路狀況與用戶端的裝置動態調整最適當的bit-stream。
      即使H.264視訊封包的標頭會告知其封包的重要性資訊,但現存的OSI分層模型中MAC層和PHY層無法辨別應用層視訊封包的重要性,因此當網路流量開始壅塞,容易發生因遺失對影片影響度較大的視訊封包而導致視訊品質劇烈下降的情形。
      因此,本文提出在IEEE 802.16e網路之跨多層機制使應用層中不同重要度的視訊封包能映射到網路層、MAC層,使MAC層能辨別視訊封包的重要性而給予相對應的服務品質保證。由實驗數據得知,如此架構可以大大提升用戶端的視訊品質。


    The Scalable Video Coding (SVC) is extended from the H.264/AVC video coding standard. It is very suitable for deployed on diverse access networks because of its network-friendly nature. Besides, by means of the spatial, temporal and quality scalabilities of SVC, a terminal station would receive the best suitable combination of these layer representations according to the radio channel condition and the capacity of the specific terminal station dynamically.
    Under the concept of layer-separation of the OSI layer model, however, existing access network techniques would be upper layer unaware, that is, the PHY and MAC layer could not recognize the importance of dependency implied to each NAL Unit in decoding process. Thus, while the traffic loading in the access network becomes heavy, the video quality would degrade dramatically due to the upper layer-unaware nature of the existing systems.
    Here, we propose a cross multi-layer mechanism to let the MAC layer of a IEEE 802.16e network system become aware to the importance of decoding dependency of each NAL Unit and make a suitable decision to the corresponding resource allocation. According to the simulation results, it is obvious that the video quality would be improved significantly.

    中文摘要................................................I 英文摘要...............................................II 誌謝..................................................III 目錄...................................................IV 圖目錄................................................VII 表目錄..................................................X 第1章 緒論.............................................1 1.1 前言...............................................1 1.2 相關研究...........................................2 1.3 研究動機...........................................4 1.4 論文架構...........................................5 第2章 網際網路視訊應用服務.............................6 2.1 H.264/SVC可調性視訊編碼技術........................7 2.1.1 視訊編碼層(Video Coding Layer)...................8 2.1.1.1 畫面內預測(Intra-Frame Prediction).............9 2.1.1.2 畫面間預測(Inter-Frame Prediction)............11 2.1.2 網路提取層(Network Abstraction Layer)...........12 2.1.2.1 NAL-unit......................................13 2.1.2.2 Access Unit...................................16 2.1.2.3 SEI和Parameter Set............................17 2.1.3 時間可調性(Temporal Scalability)................17 2.1.4 空間可調性(Spatial Scalability).................18 2.1.5 訊噪比可調性(SNR Scalability)...................19 2.2 傳輸協定..........................................20 2.2.1 即時傳輸協定(RTP)...............................20 2.2.2 網際網路協定(IP)................................22 2.3 IEEE 802.16e網路技術..............................24 2.3.1 實體層..........................................25 2.3.2 MAC層...........................................25 第3章 視訊封包優先權與跨層服務品質研究................29 3.1 可調性視訊封包優先權映射之設計....................30 3.1.1 結合時間與訊噪比可調性的優先權等級配置..........32 3.1.2 結合時間與空間可調性的優先權等級配置............34 3.1.3 QoS Mapping Algorithm...........................36 3.2 SVC於IEEE 802.16e跨多層服務品質對應...............39 第4章 實驗結果與討論..................................43 4.1 模擬環境架構......................................43 4.1.1 視訊伺服器參數設定..............................44 4.1.2 網路模擬環境說明及參數設定......................45 4.2 跨多層服務品質架構效能分析........................46 第5章 結論與未來研究..................................55 參考文獻...............................................56

    [1] IEEE 802.16e-2005, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1,” February, 2005
    [2] S. Wenger, M. M. Hannuksela, T. Stockhammer, M. Westerlund, and D. Singer, “RTP payload format for H.264 video,” IETF, RFC3984, Feb. 2005
    [3] S.Wenger, Y. K.Wang, and T. Schierl, “RTP payload format for SVC Video, draft-ietf-avt-rtp-svc-14.txt,” IETF Internet Draft, Sep. 2008
    [4] “ Advanced Video Coding for Generic Audiovisual Services, ” v8, ITU-T Rec. H.264, Nov. 2007
    [5] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, “Overview of the Scalable Video Coding Extension of the H.264/AVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, VOL. 17, No.9, pp.560-576, Sep. 2007
    [6] Hsing-Lung Chen, Po-Ching Lee, Shu-Hua Hu, “Improving Scalable Video Transmission over IEEE 802.11e through a Cross-Layer Architecture,” The Fourth International Conference on Wireless and Mobile Communications, IEEE, pp.241-246, July 2008
    [7] Wenger, S., Ye-Kui Wang, Schierl, T, “Transport and Signaling of SVC in IP Networks,” IEEE Transactions on Circuits and Systems for Video Technology, VOL. 17, No.9, pp.1164-1173, Sep. 2007
    [8] Ye-Kui Wang, Miska M. Hannuksela, Stephan Pateux, Alex Eleftherianis, Stephan Wenger, “System and Transport Interface of SVC,” IEEE Transactions on Circuits and Systems for Video Technology, VOL.17, No.9, pp.1149-1163, Sep. 2007
    [9] Stephan Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems for Video Technology, VOL.13, No.7, pp.645-656, July 2003
    [10] Ksentini, A., Naimi, M., Gueroui, A., “Toward an improvement of H.264 video transmission over IEEE 802.11e through a cross-layer architecture,” IEEE Communications Magazine, VOL.44, No.1, pp.107-114, Jan. 2006
    [11] Ksentini, A., Gueroui, A., Naimi, M, “Improving H.264 video transmission in 802.11e EDCA,” Proceedings of 14th International Conference on Computer Communications and Networks, IEEE, Oct. 2005
    [12] J Reichel, H Schwarz, M Wien, “Joint Scalable Video Model JSVM-11,” ITU-T and ISO/IEC JVT-X202, July 2007
    [13] JR Ohm, “Advances in Scalable Video Coding,” Proceedings of the IEEE, Vol.93, No.1, pp.42-56, Jan. 2005
    [14] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Protocol for Real-Time Applications,” RFC 3550, July 2003.
    [15] J. Postel, “User Datagram Protocol,” RFC 768, Aug. 1980.
    [16] J. Postel, “Internet protocol DARPA internet program protocol specification,” IETF STD 0005, RFC 791, Sep. 1981.
    [17] Jen-Chun Chiang, Hsiang-Fu Lo, Wei-Tsong Lee, “Scalable Video Coding of H.264/AVC Video Streaming with QoS-based Active Dropping in 802.16e networks,” 22nd International Conference on Advanced Information Networking and Applications - Workshops, IEEE, pp.1450-1455, 2008.
    [18] Hung-Hui Juan, Hsiang-Chun Huang, Ching-Tao Huang, Tihao Chiang, “Cross-layer mobile WiMAX MAC designs for the H.264/AVC scalable video coding,” Wireless Networks, DOI 10.1007/s11276-008-0118-1, May 2008
    [19] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, Ajay Lethra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, VOL. 13, NO. 7, pp.560-576, July 2003
    [20] Stockhammer, T., Hannuksela, M.M., Wiegand, T., “H.264/AVC in wireless environments,” IEEE Transactions on Circuits and Systems for Video Technology, Volume 13, Issue 7, pp.657-673, July 2003
    [21] Segall, C.A., Sullivan, G.J., “Spatial Scalability Within the H.264/AVC Scalable Video Coding Extension,” IEEE Transactions on Circuits and Systems for Video Technology, Volume 17, Issue 9, pp.1121-1135, Sep. 2007
    [22] Jeffrey G. Andrews, Arunabha Ghosh, Rias Muhamed, “Fundamentals of WiMAX: understanding broadband wireless networking,” ISBN 0-13-222552-2, Pearson Education, Inc., 2007
    [23] Chih-Heng Ke, Ce-Kuen Shieh, Wen-Shyang Hwang, Ziviani, A., “A two markers system for improved MPEG video delivery in a DiffServ network,” in IEEE Communications Letters, Vol. 9 Issue 4, pp.381-383, Apr. 2005
    [24] J. Magalhaes, P. Guardieiro, “A new QoS mapping for streamed MPEG video over a DiffServ domain,” in IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, Vol. 1, pp.675-679, July 2002
    [25] Lishui Chen, Guizhong Liu, “A Delivery System for Scalable Video Streaming Using the Scalability Extension of H.264/AVC over DiffServ Networks,” International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IEEE, pp.665-669, Aug. 2008
    [26] Lina Zhang, Chun Yuan, Yuzhuo Zhong, “Reliable and Efficient Adaptive Streaming Mechanism for Multi-user SVC VoD System over GPRS/EDGE Network,” International Conference on Computer Science and Software Engineering, IEEE, Vol. 3, pp.232-235, Dec. 2008

    QR CODE
    :::