跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯佩汝
Pei-Ju Ko
論文名稱: 金屬輔助化學蝕刻法製備矽奈米線之熱電性質研究
Thermoelectric properties of silicon nanowires fabricated using metal-assisted chemical etching
指導教授: 李勝偉
Sheng-Wei Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 一微奈米結構金屬輔助化學蝕刻法熱電電漿表面改質
外文關鍵詞: silicon, one-dimensional nanostructure, mental-assisted chemical etching, thermoelectric, plasma-surface modification
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽塊材在室溫下為高熱導率材料,熱導率約為150 W/m-K,導致矽塊材ZT值只有0.01,為不良的熱電材料,降低矽的熱導率才能提升ZT值,因此,一維奈米結構成為熱門的研究。相較於塊材,一維矽奈米線結構表面容積比大,聲子傳遞受到侷限,導致聲子散射,有效降低熱導率。本研究使用低摻雜p-type及重摻雜n-type (100)矽晶片,以金屬輔助化學蝕刻法(Mental-assisted chemical etching)製成單晶粗糙的矽奈米線,直徑約為150-250nm,熱導率明顯下降,經氧電漿蝕刻,低摻雜奈米線電導率電導率會上升。


    The thermal conductivity of bulk silicon is 150Wm-1K-1 at room temperature. It is considered as poor thermoelectric material. The ZT is just 0.01 due to its high thermal conductivity. Thus, one dimensional nanostructure has become a good study to solve this problem. Comparing with bulk, there have large surface to volume ratio of one dimension nanostructure. The thermal conductivity reduced by the phonon scattering in the boundary of nanowires. It is helpful to reduce the thermal conductivity. In our study, we use MACE method to fabricate single rough silicon nanowires from lightly doped p-type and heavily doped n-type (100) wafers. The diameter of silicon nanowires are about 150-250nm. The thermal conductivity was decreasing obviously. After oxygen plasma etching, the electric conductivity was increased for lightly doped silicon nanowires.

    摘要 i Abstract ii 致謝 iii 目錄 v 圖目錄 viii 第一章 文獻回顧 1 1.1矽一維奈米結構特性 1 1.2 矽一維奈米結構合成方法 2 1.2.1 熱蒸鍍法 2 1.2.2 雷射消融法 2 1.2.3 化學氣相沉積法 3 1.2.4 分子束磊晶法 4 1.2.5 超臨界流體-液-固合成法 5 1.3 矽一維奈米結構合成機制 6 1.3.1 氣-液-固成長機制 6 1.3.2 氣-固-固成長機制 7 1.3.3 固-液-固成長機制 8 1.3.4 溶液-液-固成長機制 9 1.3.5 氧化物輔助成長機制 9 1.4 金屬輔助蝕刻法 10 1.4.1一步金屬輔助化學蝕刻法 10 1.4.2 兩步金屬輔助化學蝕刻法 12 1.5 熱電效應及熱電材料 12 1.6 電漿表面改質技術 15 第二章 實驗方法及儀器 18 2.1 實驗流程圖 18 2.2 實驗藥品 19 2.3 實驗儀器 20 2.3.1 顯微拉曼光譜儀 20 2.3.2 掃描式電子顯微鏡 20 2.3.3 穿透式電子顯微鏡 21 2.3.4 雙束型場發射聚焦離子束系統 22 2.3.5 微波電漿源及電源供應器 23 第三章 矽奈米結構之熱電性質探討 25 3.1 研究動機 25 3.2 實驗步驟 27 3.2.1 製備矽奈米線 27 3.2.2 矽奈米線電漿改質製成 30 3.2.3 製備熱電性質量測試片 31 3.2.4 熱電性質量測 32 第四章 實驗結果與討論 35 4.1矽奈米線結構與形貌分析 35 4.1.1金屬輔助化學蝕刻法矽奈米線 35 4.1.2電漿改質矽奈米線 41 4.2熱電性質分析 47 4.3 結論 52 第五章 未來展望 53 參考文獻 54

    [1] J.-H. Lee, G.A. Galli, J.C. Grossman, "Nanoporous Si as an Efficient Thermoelectric Material", Nano Letters, 8 , 3750-3754, (2008).
    [2] L. Hu, G. Chen, "Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications", Nano Letters, 7, 3249-3252, (2007).
    [3] 李婉琪,"整合銀染技術與矽奈米線太陽能電池陣列之生醫感測平台研究",奈米科技研究所,交通大學,1-68,(2013).
    [4] 歐祖銘,C.-W. Hong,T.-M. Ou,"固態物理與電聲子動態研究磁化矽奈米線熱電晶片".
    [5] F.J. Li, S. Zhang, J.W. Lee, "Rethinking of the silicon nanowire growth mechanism during thermal evaporation of Si-containing powders", Thin Solid Films, 558, 75-85, (2014).
    [6] N. Wang, Y.Cai, R.Q. Zhang, "Growth of nanowires", Materials Science and Engineering: R: Reports, 60 , 1-51, (2008).
    [7] N. Fukata, T. Oshima, T. Tsurui, S. Ito, K. Murakami, "Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam", Science and Technology of Advanced Materials, 6 , 628, (2005).
    [8] N.M. Hwang, W.S. Cheong, D.Y. Yoon, D.-Y. Kim, "Growth of silicon nanowires by chemical vapor deposition: approach by charged cluster model", Journal of Crystal Growth, 218 , 33-39, (2000).
    [9] A.I. Hochbaum, R. Fan, R. He, P. Yang, "Controlled Growth of Si Nanowire Arrays for Device Integration", Nano Letters, 5 , 457-460, (2005).
    [10] J.R. Arthur, "Molecular beam epitaxy", Surface Science, 500 , 189-217, (2002).
    [11] P. Werner, N.D. Zakharov, G. Gerth, L. Schubert, U. Gösele, "On the formation of Si nanowires by molecular beam epitaxy", International Journal of Materials Research, 97 , 1008-1015, (2006).
    [12] T. Hanrath, B.A. Korgel, "Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals", Advanced Materials, 15 , 437-440, (2003).
    [13] T. Hanrath, B.A. Korgel, "Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals", Journal of the American Chemical Society, 124 , 1424-1429, (2002).
    [14] R.S. Wagner, W.C. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth", Applied Physics Letters, 4 , 89-90, (1964).
    [15] H.-K. Park, B. Yang, S.-W. Kim, G.-H. Kim, D.-H. Youn, S.-H. Kim, S.-L. Maeng, "Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates", Physica E: Low-dimensional Systems and Nanostructures, 37 , 158-162, (2007).
    [16] Y. Wu, P. Yang, "Direct Observation of Vapor−Liquid−Solid Nanowire Growth", Journal of the American Chemical Society, 12, 3165-3166, (2001).
    [17] V. Schmidt, J.V. Wittemann, S. Senz, U. Gösele, "Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties", Advanced Materials, 21 , 2681-2702, (2009).
    [18] J.I. Abdul Rashid, J. Abdullah, N.A. Yusof, R. Hajian, "The Development of Silicon Nanowire as Sensing Material and Its Applications", Journal of Nanomaterials, 2013, 16, (2013).
    [19] K.W. Kolasinski, "Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth", Current Opinion in Solid State and Materials Science, 10, 182-191, (2006).
    [20] C.Y. Wen, M.C. Reuter, J. Tersoff, E.A. Stach, F.M. Ross, "Structure, Growth Kinetics, and Ledge Flow during Vapor−Solid−Solid Growth of Copper-Catalyzed Silicon Nanowires", Nano Letters, 10 , 514-519, (2010).
    [21] S. Noor Mohammad, "For nanowire growth, vapor-solid-solid (vapor-solid) mechanism is actually vapor-quasisolid-solid (vapor-quasiliquid-solid) mechanism", The Journal of Chemical Physics, 131, 224702, (2009).
    [22] J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, "Alternative catalysts for VSS growth of silicon and germanium nanowires", Journal of Materials Chemistry, 19, 849-857, (2009).
    [23] H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, S.Q. Feng, "Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism", Chemical Physics Letters, 323, 224-228, (2000).
    [24] R.Q. Zhang, Y. Lifshitz, S.T. Lee, "Oxide-Assisted Growth of Semiconducting Nanowires", Advanced Materials, 15 ,635-640, (2003).
    [25] H. Han, Z. Huang, W. Lee, "Metal-assisted chemical etching of silicon and nanotechnology applications", Nano Today, 9, 271-304, (2014).
    [26] K.Q. Peng, Y.J. Yan, S.P. Gao, J. Zhu, "Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry", Advanced Materials, 14, 1164-1167, (2002).
    [27] A. Nassiopoulou, V. Gianneta, C. Katsogridakis, "Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics", Nanoscale Research Letters,.6, 1-8, (2011).
    [28] F. Bai, M. Li, R. Huang, D. Song, B. Jiang, Y. Li, "Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching", Nanoscale Research Letters, 7, 1-5, (2012).
    [29] W.-K. To, C.-H. Tsang, H.-H. Li, Z. Huang, "Fabrication of n-Type Mesoporous Silicon Nanowires by One-Step Etching", Nano Letters, 11, 5252-5258, (2011).
    [30] L.A. Osminkina, K.A. Gonchar, V.S. Marshov, K.V. Bunkov, D.V. Petrov, L.A. Golovan, F. Talkenberg, V.A. Sivakov, V.Y. Timoshenko, "Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect", Nanoscale research letters, 7, 1-6, (2012).
    [31] R. Ouertani, A. Hamdi, C. Amri, M. Khalifa, H. Ezzaouia, "Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method", Nanoscale research letters, 9, 1-10, (2014).
    [32] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, F. Wei, X. Yang, "Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE", Journal of Solid State Chemistry, 213, 242-249, (2014).
    [33] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, F. Wei, "Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature", Nanoscale research letters, 9 , 1-8, (2014).
    [34] Y. Qu, L. Liao, Y. Li, H. Zhang, Y. Huang, X. Duan, "Electrically conductive and optically active porous silicon nanowires", Nano letters, 9 , 4539-4543, (2009).
    [35] M.-L. Zhang, K.-Q. Peng, X. Fan, J.-S. Jie, R.-Q. Zhang, S.-T. Lee, N.-B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching", The Journal of Physical Chemistry C, 112 , 4444-4450, (2008).
    [36] X. Zhong, Y. Qu, Y.-C. Lin, L. Liao, X. Duan, "Unveiling the formation pathway of single crystalline porous silicon nanowires", ACS applied materials & interfaces, 3 , 261-270, (2011).
    [37] Y. Qi, Z. Wang, M. Zhang, F. Yang, X. Wang, "A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching", The Journal of Physical Chemistry C, 117 , 25090-25096, (2013).
    [38] D.M. Rowe, "CRC handbook of thermoelectrics", CRC press, (1995).
    [39] L. Weber, E. Gmelin, "Transport properties of silicon", Applied Physics A, 53 , 136-140, (1991).
    [40] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires", Nature, 451 , 163-167, (2008).
    [41] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, J.R. Heath, "Silicon nanowires as efficient thermoelectric materials", Nature, 451, 168-171, (2008).
    [42] E. Nasser, "Fundamentals of gaseous ionization and plasma electronics", Wiley-Interscience, (1971).
    [43] P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, "Plasma-surface modification of biomaterials", Materials Science and Engineering: R: Reports, 36, 143-206, (2002).
    [44] S. Tachi, K. Tsujimoto, S. Okudaira, "Low‐temperature reactive ion etching and microwave plasma etching of silicon", Applied physics letters, 52, 616-618, (1988).
    [45] K.-S. Chen, A. Ayón, X. Zhang, S.M. Spearing, "Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE)", Microelectromechanical Systems, Journal of, 11, 264-275, (2002).
    [46] K. Suzuki, A. Sawabe, H. Yasuda, T. Inuzuka, "Growth of diamond thin films by dc plasma chemical vapor deposition", Applied physics letters, 50, 728-729, (1987).
    [47] Y. Osada, "Plasma polymerization processes", Elsevier Science Ltd, (1992).
    [48] N. Inagaki, "Plasma surface modification and plasma polymerization", CRC Press, (1996).
    [49] D.J. Economou, "Pulsed plasma etching for semiconductor manufacturing", Journal of Physics D: Applied Physics, 47, 303001, (2014).
    [50] C.-Y. Tsai, S.-Y. Yu, C.-L. Hsin, C.-W. Huang, C.-W. Wang, W.-W. Wu, "Growth and properties of single-crystalline Ge nanowires and germanide/Ge nano-heterostructures", CrystEngComm, 14, 53-58, (2012).
    [51] M.C. Wingert, Z.C. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, "Thermal conductivity of Ge and Ge–Si core–shell nanowires in the phonon confinement regime", Nano letters, 11 , 5507-5513, (2011).
    [52] M. Ghossoub, K. Valavala, M. Seong, B. Azeredo, K. Hsu, J. Sadhu, P. Singh, S. Sinha, "Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires", Nano letters, Vol.13, 1564-1571, (2013).
    [53] M. Brodsky, M. Cardona, J. Cuomo, "Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering", Physical Review B, 16, 3556, (1977).
    [54] Z. Iqbal, S. Veprek, "Raman scattering from hydrogenated microcrystalline and amorphous silicon", Journal of Physics C: Solid State Physics, 15, 377, (1982).
    [55] G. Kumar, G. Prasad, R. Pohl, "Experimental determinations of the Lorenz number", Journal of materials science, 28, 4261-4272, (1993).
    [56] M. Holland, "Analysis of lattice thermal conductivity", Physical Review, 132, 2461, (1963).
    [57] Y. Ju, K. Goodson, "Phonon scattering in silicon films with thickness of order 100 nm", Applied Physics Letters, 74, 3005-3007, (1999).
    [58] D.K. Brice, K.B. Winterbon, "Ion implantation range and energy deposition distributions: Low incident ion energies", Plenum Press, (1975).
    [59] S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.P. Fleurial, "Nanostructured bulk silicon as an effective thermoelectric material", Advanced Functional Materials, 19, 2445-2452, (2009).
    [60] A.I. Hochbaum, D. Gargas, Y.J. Hwang, P. Yang, "Single crystalline mesoporous silicon nanowires", Nano letters, 9 , 3550-3554, (2009).
    [61] J.S. Meena, M.-C. Chu, Y.-C. Chang, H.-C. You, R. Singh, P.-T. Liu, H.-P.D. Shieh, F.-C. Chang, F.-H. Ko, "Effect of oxygen plasma on the surface states of ZnO films used to produce thin-film transistors on soft plastic sheets", Journal of Materials Chemistry C, 1, 6613-6622, (2013).
    [62] J. Koo, S. Kim, "Charge transport modulation of silicon nanowire by O2 plasma", Solid State Sciences, 11, 1870-1874, (2009).
    [63] R. Jaeger, L. Egerton, "Hot Pressing of Potassium‐Sodium Niobates", Journal of the American Ceramic Society, 45, 209-213, (1962).
    [64] M. Tokita, Mechanism of spark plasma sintering, Proceeding of NEDO International Symposium on Functionally Graded Materials, Japan, 22,(1999)

    QR CODE
    :::