| 研究生: |
洪嘉濃 Jia-Nong Hung |
|---|---|
| 論文名稱: |
二維量子點光子晶體雷射模擬與分析 Two dimensional quantum dots photonic crystal laser simulation and analysis |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 高速調變速率 、量子點 、光子晶體雷射 |
| 外文關鍵詞: | high speed modulation rate, quantum dot, photonic crystal laser |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在研究二維光子晶體共振腔對量子點雷射的特性。光子晶體共振腔因為本身有高品質因子和低模態體積的特性,使得光在腔體內具有很強量子增益機制及高Purcell效應,有助於改善雷射的特性,例如低臨界功率、高自發性輻射耦合係數和高微分量子效益。
在本研究中,為了模擬光子晶體共振腔內載子和光子的交互作用,我們從雷射速率方程式推導,並引用雷射量子臨界功率的定義和計算共振腔體的基本物理參數,建立一個二維量子點光子晶體雷射的分析模組。我們利用此模組分別模擬品質因子、模態體積和Purcell效應對雷射特性的影響。最後我們利用雷射動態方程式,估計 quasi-L2共振腔雷射的小訊號調變速率可達到約400 GHz,並進一步找出影響調變速率的參數,使光子晶體雷射調變速度提升至THz的等級。
This thesis describes the characteristics of two dimensional photonic crystal cavity lasers. Photonic crystal cavities provide high quality factor (Q) and low mode volume (), which lead to enhanced light emission rate through Purcell effect. They can be used for improving the performance of lasers; for instance, lowering the threshold, increasing the spontaneous emission coupling efficiency and differential quantum efficiency.
In this work, we construct an analytic model for two dimensional quantum dot photonic crystal laser to simulate the interplay of carriers and photons in photonic crystal cavity based on rate equations. Then, we use the model to predict the spontaneous emission coupling efficiency as well as the effects of quality factor, mode volume and Purcell effect on the characteristics of photonic crystal cavity lasers. Small signal modulation speed as high as 400 GHz is predicted for a quasi-L2 cavity laser. Photon crystal cavity parameters for achieving modulation speeds up to the order of THz are also proposed and discussed.
[1] Intel Technology Journal, Volume 8, Issue 2, 2004
[2] G. Bjork and Y. Yamamoto, “Analysis of Semiconductor Microcavity Lasers Using Rate Equations”, IEEE J. Quantum Electron.Vol.27, No.11, 2386–96 (1991).
[3] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”,Phy. Rev. Lett., 58, 2059(1987)
[4] [4] S.John, “Strong localization of photons in certain disordered dielectric superlattices”,Phy.Rev. Lett., 58, 2486(1987)
[5] E. Yablonovitch, “Photonic crystals: semiconductor of light”, Scientific American December,47(2001)
[6] E. Yablonovitch, et. al. “Photonic band structure: The face-centered-cubic case employing nonspherical atoms”, Phys. Rev. Lett. 67, 2295(1991)
[7] O. Painter, et. al. “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science,284, 1819(1999)
[8] Masahiro, et al. “Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation”, Appl. Phys. Letters, 89, 161111 (2006)
[9] Hong-Gyu Park, et al, “Characteristics of Electrically Driven Two-Dimensional Photonic Crystal Lasers”, IEEE J. Quantum Electron, Vol. 41, No. 9, page 1131 (2005)
[10] Atsushi Sugitatsu, et al. “ Line-defect-waveguide laser integrated with a point defect in a two-dimensional photonic crystal slab”, Appl. Phys. Letters, 86, 171106 (2005)
[11] Ilya Fuchman, et al “Ultra photonic crystal nanocavity lasers and optical swithches”. Invited Paper Proc. of SPIE Vol.6889 688910-1
[12] Masayuki, et al. “Simultaneous Inhibition and Redistribution of Spontaneous Light Emission in Photonic Crystal”, Science, 308, 1296 (2005)
[13] E. M. Purcell, “Spontaneous Emission Probabilities at Ratio Frequency”, Phys. Rev., 69,681 (1946)
[14] W.-Y. Chen, W.-H. Chang, H.-S. Chang, and T. M. Hsu, “Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature”,Appl. Phys. Letters, 87, 071111 (2005)
[15] T. Yoshie, A.Scherer, et.al “Quantum dot photonic crystal laser”, Electronics Letters , Vol.38, No.17,page 967(2002)
[16] S.Noda, et.al, “Spontaneous-emission control by photonic crystals and nanocavities”, Nature photonics Vol.1 ,499 (2007)
[17] M. Nomura,Y. Yarakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity”, Opt. Express Vol.14, No.13, 6308 (2006)
[18] K.Sakoda, “Opticcal Properties of Photonic Crystal,” Springer-Verlag, 2004.
[19] K.S.Yee,” Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
[20] K. Kawano and T. Kitoh, “Introduction to Optical Waveguide Analysis,” WILEY, (2001).
[21] K. Noazki et. al. “Laser characteristics with ultimate-small modal volume in photonic crystal salb point-shift nanolasers”, Appl. Phys. Letters, 88, 211101 (2006)
[22] Yoshihiro Akahane, et. al. “High-Q photonic nanocavity in a two dimensional photonic crystal”, Nature, 425, 944(2003)
[23] Han-Youl Ryu, et. al.. “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication,and Characterization”, IEEE J. Quantum Electrons, Vol. 8, No. 4,891 (2002)
[24] Dirk Englund, et. al. .“General recipe for designing photonic crystal cavities”, Opt. Express Vol.13, No.16, 5961 (2005)
[25] L. A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
[26] Hatice Altug and Jelena Vučković, “Photonic crystal nanocavity array laser”, Opt. Express Vol.13, No.22, 8819-8828(2005)
[27] G. Bjork and Y. Yamamoto, “Definition of a laser threshold”, Phys. Rev. A, Vol. 50, No. 2,1675 (1994)
[28]http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/Figs/444a.gif
[29] J. Vuckovic, Y. Yamamoto, et. al.. “Enhanced single-photon emission from a quantum dot in a micropost microcavity”,Appl. Phys. Letters, 82, 3596 (2003)
[30] S.Reitzenstein,et. al..”Lasing in high-Q quantum micropoillar cavities” ,Appl. Phys. Letters, 89, 051107 (2006).
[31] D. Bimberg et al., IEEE J. Sel. Top. Quantum Electron. 3,196 (1997).
[32] Bryan Ellis,Ilya Fusgman, et. al.. “Dynamics of quantum dot photonic crystal laser”,Appl. Phys. Letters, 90, 151102 (2007)
[33] M. Nomura,Y. Yarakawa, et. al. “Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor” ,Phy. Rev. B Vol.75, 195313 (2007).
[34] Weidong Zhou, et. al.”Photonic crystal defect mode cavity modeling:a phenomenological dimensional reduction approach” ,Phy. Rev. B Vol.75, 195313 (2007).
[35] D. Englund, , Y. Arakawa, Y. Yamamoto, and J. Vuˇckovi’c, ”Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal”,Phys. Rev. Lett. 95(7), 013904 (2005).
[36] H. Altug, D. Englund, and J. Vuˇckovi’c, ”Ultrafast photonic crystal nanocavity laser ”Nature Phys. 2,484–488 (2006).
[37] D. Englund, and J. Vuˇckovi’c, ”Ultrafast photonic crystal lasers” Laser & Photon. Rev. 1–11 (2008).
[38] T.Tawara, et.al “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities”, Opt. Express Vol.16, No.8, 5199 (2008)
[39] D. Miller, Rationale and challenges for optical interconnects to electronic chips.Proceedings of the IEEE 88, 728 (2000).
[40] I. Ichimura, F. Maeda, K. Osato, K. Yamamoto, and Y. Kasami, Optical Disk Recording Using a GaN Blue-Violet Laser Diode. Jpn. J. Appl. Phys. 39, 937(2000).
[41] K. L. Lear, et. al. “Small and large signal modulation of 850 nm oxide-confined vertical cavity surface emitting lasers”, Advances in Vertical Cavity Surface Emitting Lasers in series OSA Trends in Optics and Photonics, 15, 69-74 (1997).
[42] C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, Injection locking of VCSELs. J. Sel. Top. Quantum Electron. 9, 1386 (2003).
[43] L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. L. Thomas, R. Houdr´e, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths”. Applied Physics Letters 91, 123115 (2007).
[44] S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers.” Phys. Rev. Lett. 96, 127404 (2006).
[45] H. Altug, D. Englund, and J. Vuˇckovi´c, Ultrafast photonic crystal nanocavity laser. Nature Physics 2, 484 (2006).
[46] T. Yoshie, M. Lonˇcar, A. Scherer, and Y. Qiu, High frequency oscillation in photonic crystal nanolasers. Appl. Phys. Lett. 84, 3543 (2004).
[47] D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vuckovic,”Dynamics of quantum dot photonic crystal lasers” Opt. Express 15(4), 5550–5558 (2007).
[48] S.Fathpour, P Bhattacharya, “High speed quantum dot laser”, J. Phys. D: Appl. Phys. 38,2103-2111(2005)