| 研究生: |
劉興庄 Hsing-Chuang Liu |
|---|---|
| 論文名稱: |
適用於MPEG-2/4 AAC編碼器之低複雜度平台式聲學模型設計 A Low Complexity Platform-Based Psychoacoustic Model (PAM) for MPEG-2/4 AAC Encoder |
| 指導教授: |
蔡宗漢
Tsung-Han Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 平台式設計 、改良式離散餘弦轉換 、聲學模型 、音訊編碼 |
| 外文關鍵詞: | Platform-Based Design, MDCT, Psychoacoustic Model, Audio Coding |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從MP3被發表以及風靡全世界之後,數位音訊技術變成日常生活中非常重要的ㄧ環。其相關的應用包含有數位音訊廣播、各類隨身聽、iPod、手機等等的產品。而MPEG組織接著MP3之後推出下ㄧ世代之音訊編碼技術MPEG-2/4 AAC,AAC比前ㄧ代的MP3有更高的壓縮率且能保持更好的音樂品質。不過在AAC編碼中採用了許多複雜的演算法及繁複的運算,而如何減低運算複雜度和維持相同音樂品質仍是一項挑戰,特別是在AAC編碼器端。
本論文針對AAC編碼器之關鍵模組,聲學模型做最佳化,聲學模型利用許多複雜的運算來模擬人類聽覺系統。本文採用memory-based 的架構來實現頻帶轉換模組,DSP導向架構來完成PAM,共享式記憶體及唯讀記憶體來降低硬體所需資源。在架構設計上,我們採用快速演算法及全管線式運算單元來提升系統效能,在低功耗考量上,我們採用快取式暫存器、gating-clock、Multi-Vth的設計來改善功耗問題。本文提出之架構設計在台積電0.13CMOS製程實現,需要43k邏輯閘,3.1MHz的操作頻率可達即時編碼動作,功耗約為3.67毫瓦。同時我們將我們的設計整合在SOC平台上並完成整體設計之驗證。
Since MP3 has been published, and became popular consumer applications, the digital audio technique is an important part in daily life. The applications of digital audio technique include broadcast system (DAB/DAB+), portable players, iPod, and mobile phone …etc. Organization of Moving Picture Experts Group (MPEG) proposed MPEG-2/4 AAC standard which is the audio encoding technique of next generation. Both the performance and compression ratio of AAC are better than MP3. However, the algorithm is more complex and computation-intensive. Hence, how to reduce the computation and maintain quality is a major challenge of AAC encoder.
In this thesis, we optimize the key component in MPEG-2/4 AAC encoder, which is psychoacoustic model (PAM). PAM has different complicated functions to model the human auditory system. This work exploits several methods to achieve low cost consideration, which are memory-based architecture for filterbank, DSP-oriented threshold generator, shared memory, and coefficient merged scheme. We use fully pipelined MDCT and fast algorithm for filterbank to improve performance. Moreover, we apply cache-register, clock-gating, operand isolation, and multi-Vth cell to save power consumption. As the synthesis result, our PAM consumes 43 k gate counts in TSMC 0.13 COMS technology, 3.1MHz operation frequency, 3.69mW for AAC encoder. Meanwhile, we also integrate our design into a SOC platform and perform the verification on the platform.
[1]. MPEG. Coding of moving pictures and associated audio for digital storage media at up to 1.5 Mbit/s, part 3: Audio, International Standard IS 11172-3, ISO/IEC JTC1/SC29 WG11, 1992.
[2]. MPEG. Information Technology – generic coding of moving pictures and associated audio, part 3: Audio, International Standard IS 13818-3, ISO/IEC JTC1/SC29 WG11, 1994.
[3]. MPEG. MPEG-2 Advanced Audio Coding, AAC, International Standard IS 13818-7, ISO/IEC JTC1/SC29 WG11, 1997.
[4]. MPEG. Information technology – Coding of audio-visual objects – Part 3: Audio, International Standard IS 14496-3, ISO/IEC JTC1/SC29 WG11, 1999.
[5]. MPEG. Information technology – Coding of audio-visual objects – Part 3: Audio, Amendment 1: Bandwidth extension. ISO/IEC 14496-3:2001/Amd. 1:2003, Nov. 2003.
[6]. MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 2: Parametric coding for high-quality audio, ISO/IEC 14496-3/Amd. 2: 2004.
[7]. MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 2: Audio Lossless Coding, ISO/IEC 14496-3/Amd. 2: 2005.
[8]. MPEG Information technology – Coding of audio-visual objects – part 3: Audio, Amendment 3: Scalable Lossless Coding, ISO/IEC 14496-3/Amd. 3: 2005.
[9]. R. Geiger, T. Sporer, J. Koller, and K. Brandenburg, “Audio Coding based on Integer Transform,” in AES 111th Convention, New York, NY, USA Preprint 5471 Sept 2001.
[10]. P. Coussy, A. Baganne, and E. Martin. “Virtual component IP re-use in telecommunication systems design: a case study of MPEG-2/JPEG2000 encoder,” IEEE Proc .ICECS2002. vol. 2, pp.733-736, Sept. 2002
[11]. C.N. Liu, and T.H. Tsai, “SoC platform based design of MPEG-2/4 AAC audio decoder,” IEEE Proc .ISCAS2005. vol. 3, pp.2581-2584, May. 2005
[12]. Domazet, D.; Kovac, M.; “Advanced software implementation of MPEG-AAC audio encoder”, 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications, 2003. Volume 2, 2-5 July 2003 Page(s):679 - 684 vol.2
[13]. D. Huang, X. Gong, D. Zhou, T. Miki, S. Hotani, “Implementation of the MPEG-4 Advanced Audio Coding encoder on ADSP-21060 SHARC,” in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Vol. 3, page(s): 544 –547.
[14]. D. Alberto, P. Rafael, R. Begona, A. Enrique, and P. Antonio; “A Robust and Efficient Implementation of MPEG-2/4 AAC Natural Audio Coders” , in AES 112th Convention 2002 May 10-13 Munich,Germany
[15]. P. Antonio, A. Enrique, R. Begona, P. Rafael, and D. Alberto;” Realtime implementations of MPEG-2 and MPEG-4 natural audio coders” , in AES 110th Convention 2001 May 12-15 Amsterdam, The Netherlands
[16]. Y.C. Lu; C.-F. Shen and C.K. Chen; “A novel hardware accelerator architecture for MPEG-2/4 AAC encoder”, 2004 IEEE International Conference on Multimedia and Expo, 2004. ICME ''04. Volume 2, 27-30 June 2004 Page(s):1139- 1142 Vol.2
[17]. M. Kahrs, K. Brandenburg, Applications of digital signal processing to audio and acoustics. Kluwer Academic Publishers, 1998, p.59.
[18]. J.H. Luo, “Design and VLSI implementation of Low Complexity MDCT-based Psychoacoustic Model Co-Processor for MPEG-2/4 AAC Encoder,” Department of Electrical Engineering National Central University Chung-Li; Master thesis, 2006
[19]. Fengduo Hu, “ITE Technology Incorporated,”2003.
[20]. Y. Takamizawa, T. Nomura, and M. Ikekawa, “High-quality and processor-efficient implementation of an MPEG-2 AAC encoder,” in Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, Page(s): 985 –988.
[21]. J. D. Johnston, “Transform coding of audio signals using perceptual noise criteria,” IEEE Journal on Selected Areas in Communications, Vol. 6, No 2, pp. 314-323, Feb., 1988.
[22]. I. Dimkoviae, D. Milovanoviae, Z. Bojkoviae, “Fast software implementation of MPEG advanced audio encoder,” 2002 14th International Conference on Digital Signal Processing, Vol. 2, Page(s): 839 –843.
[23]. M. Kahrs, K. Brandenburg, Applications of digital signal processing to audio and acoustics. Kluwer Academic Publishers, 1998, p.59.
[24]. S.W Huang; T.H. Tsai; L.G. Chen; “A low complexity design of psycho-acoustic model for MPEG-2/4 advanced audio coding”, IEEE Transactions on Consumer Electronics Volume 50, Issue 4, Nov. 2004 Page(s):1209 - 1217 Digital Object Identifier 10.1109/TCE.2004.1362521
[25]. S.W. Huang; L.G. Chen; T.H. Tsai; “Memory and Computationally Efficient Psychoacoustic Model for MPEG AAC on 16-bit Fixed-point Processors” Circuits and Systems, 2005. ISCAS 2005. Symposium on IEEE International 23-26 May 2005 Page(s):3155 – 3158.
[26]. P.S. Wu, and Y.T. Hwan; “Efficient IMDCT core designs for audio signal processing”, IEEE Workshop on Signal Processing Systems, 2003. SIPS 2003. 27-29 Aug. 2003 Page(s):275 – 280
[27]. P. Duhmel, Y. Mahieux, and J.P. Petit, “A fast algorithm for the implementation of filter banks based 1on ‘time domain aliasing cancellation’ “, International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, Page(s): 2209-2212, Apr, 1991
[28]. Britanak, V.; Rao, K.R.; “An efficient implementation of the forward and inverse MDCT in MPEG audio coding”, Signal Processing Letters, IEEE Volume 8, Issue 2, Feb. 2001 Page(s):48 - 51 Digital Object Identifier 10.1109/97.895372.
[29]. Y.H. Fan, Madisetti, V.K. and Mersereau, R.M.; “On fast algorithms for computing the inverse modified discrete cosine transform”, IEEE Signal Processing Letters, Volume 6, Issue 3, March 1999 Page(s):61 - 64 Digital Object Identifier 10.1109/97.744625
[30]. M.-H Cheng, Y.-H. Hsu;”Fast IMDCT/MDCT algorithms-a matrix approach”, IEEE Trans. On Signal Processing. Jan 2003, pp 221-9
[31]. A.Wenzler and E. Luder, “New structures for complex multipliers and their noise analysis,” in Proc. IEEE Int. Symp. Circuits Syst.,May 1995, vol. 2, pp. 1432–1435.
[32]. Lau, W. and Chwu, A.; “A common transform engine for MPEG and AC3 audio decoder”, IEEE Transactions on Consumer Electronics, Volume 43, Issue 3, Aug. 1997 Page(s):559 – 566
[33]. T.H. Tsai, S.W. Huang, J.H. Luo, “Architecture Design of Psychoacoustic Model for MPEG-2/4 AAC Audio Encoder” The 16th VLSI Design/CAD Symposium (VLSI), 2005.
[34]. T.H. Tsai, J.H. Luo, S.W. Huang, “Low Complexity Architecture Design of MDCT-Based Psychoacoustic Model for MPEG 2/4 AAC Encoder,” IEEE Proc .ISCAS2006. May. 2006
[35]. Abed, K.H. Siferd, R.E. “CMOS VLSI implementation of a low-power logarithmic converter” IEEE Transactions on Computers, Volume 52, Issue 11, Nov. 2003 Page(s):1421 – 1433.
[36]. H. Chang et al., “Surviving the SoC Revolution: A Guide to Platform-based Designs,” Kluwer Academic, Norwell, Mass., 1999
[37]. M. A. Watson and P. Buettner, “Design and implementation of AAC decoders,” IEEE Trans. Consumer Electronics, vol. 46, issue 3, pp.819-824, Aug. 2000.
[38]. T. H. Tsai, C. N. Liu and Y. W. Wang, “A pure-ASIC design approach for MPEG-2 AAC audio decoder,” in Proc. 4th IEEE Int. Conf. Information, Communications & Signal Processing and 4th Pacific-Rim Conf. Multimedia (ICICS-PCM), vol. 3, pp.1633-1636, Dec. 2003.
[39]. P. Liu, L. Liu, N. Deng, X. Fu, J. Liu, Q. Liu, G. Zhang, and B. He, “VLSI Implementation for Portable Application Oriented MPEG-4 Audio Codec,” Circuits and Systems, 2007. ISCAS 2007. Symposium on IEEE International (ISCAS2007), pp. 777 - 780, May. 2007.
[40]. IP Qualification Alliance, “IP Qualification Guidelines”, Industrial Technology Research Institute, 2003
[41]. Synopsys Inc.” DesignWare AHB Verification IP Databook , ” Synopsys, May 2006.
[42]. CoWare Inc. http://www.corware.com/
[43]. T.H. Tsai and C.N. Liu, “A Configurable Common Filterbank Processor for Multi-Standard Audio Decoder,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E90-A, No.9, pp.1913-1923, Sep. 2007.
[44]. C.C. Wang, and Y.C. Lin “An Efficient FFT Processor for DAB Receiver Using Circuit-Sharing Pipeline Design” IEEE Transactions on Broadcasting, Vol. 53, Issue.3, pp.670-677, Sep. 2007.
[45]. S.C. Tai , C.C. Wang, and C.Y. Lin “FFT and IMDCT circuit sharing in DAB receiver” IEEE Transactions on Broadcasting, Vol. 49, Issue.2, pp.124-131, June 2003.